首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food animal Salmonella isolates. The information from our study can assist in source attribution, outbreak investigations, and tailoring of interventions to maximize their impact on prevention.  相似文献   

2.
The potential impact of food animals in the production environment on the bacterial population as a result of antimicrobial drug use for growth enhancement continues to be a cause for concern. Enterococci from 82 farms within a poultry production region on the eastern seaboard were isolated to establish a baseline of susceptibility profiles for a number of antimicrobials used in production as well as clinical environments. Of the 541 isolates recovered, Enterococcus faecalis (53%) and E. faecium (31%) were the predominant species, while multiresistant antimicrobial phenotypes were observed among all species. The prevalence of resistance among isolates of E. faecalis was comparatively higher among lincosamide, macrolide, and tetracycline antimicrobials, while isolates of E. faecium were observed to be more frequently resistant to fluoroquinolones and penicillins. Notably, 63% of the E. faecium isolates were resistant to the streptogramin quinupristin-dalfopristin, while high-level gentamicin resistance was observed only among the E. faecalis population, of which 7% of the isolates were resistant. The primary observations are that enterococci can be frequently isolated from the poultry production environment and can be multiresistant to antimicrobials used in human medicine. The high frequency with which resistant enterococci are isolated from this environment suggests that these organisms might be useful as sentinels to monitor the development of resistance resulting from the usage of antimicrobial agents in animal production.  相似文献   

3.
Concerns over the increasing emergence of antibiotic-resistant pathogenic microorganisms due to the overuse of antibiotics and the lack of effective antibiotics for livestock have prompted efforts to develop alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) with a broad-spectrum activity and rapid killing, along with little opportunity for the development of resistance, represent one of the promising novel alternatives. Their high production cost and cytotoxicity, however, limit the use of AMPs as effective antibiotic agents to livestock. To overcome these problems, we developed potent antimicrobial Escherichia coli displaying multimeric AMPs on the cell surface so that the AMP multimers can be converted into active AMP monomers by the pepsin in the stomach of livestock. Buf IIIb, a strong AMP without cytotoxicity, was expressed on the surface of E. coli as Lpp-OmpA-fused tandem multimers with a pepsin substrate residue, leucine, at the C-terminus of each monomer. The AMP multimers were successfully converted into active AMPs upon pepsin cleavage, and the liberated Buf IIIb-L monomers inhibited the growth of two major oral infectious pathogens of livestock, Salmonella enteritidis and Listeria monocytogenes. Live antimicrobial microorganisms developed in this study may represent the most effective means of providing potent AMPs to livestock, and have a great impact on controlling over pathogenic microorganisms in the livestock production.  相似文献   

4.
Since World War II the use of antimicrobial products associated with food animal production has increased. Antimicrobials along with evolving production practices have significantly increased throughput, animal welfare, and improved health. Concerns surrounding the growing significance of emerging and in some cases rapidly disseminating antibiotic (antimicrobial) resistant bacterial pathogens among human and livestock populations has stimulated a reassessment of this application. The negative publicity has led many consumers and activist groups to believe that protein derived from food animals grown in the absence of those drugs is safer than products derived from the conventionally reared. There is a general fear that antimicrobial usage in agriculture threatens the sustainability of human therapeutic agents and the public wellbeing. The issue has gradually emerged from “fringe group paranoia” to mainstream—finally impacting consumer choices.

Antimicrobial resistance concerns have stimulated a significant reaction by the US animal agriculture industry. Numerous pig production entities, large and small, have attempted to create additional pork product value by developing niche marketing opportunities. Thus far most of the subtherapeutic in-feed antimicrobial reduction has been voluntary in the US. Two production areas have developed where reduced usage occurs. First is the growth of antibiotic free production (ABF) and second is an increased use of treatment levels which avoids subtherapeutic criticism. The bulk of this article is directed at new production practices, pig health management, disease elimination, and biosecurity efforts that result from early industry attempts at reduced or excluded antimicrobial pig production. Raising antimicrobial (antibiotic) free (ABF) pork from birth is challenging for a variety of reasons. Some of these challenges can be cost effectively dealt with while others are difficult if not impossible to control in modern production environments. Healthy pig production is essential for sustainable ABF operations.  相似文献   

5.
李豫  杨小鹃  张菊梅  王涓  吴清平 《微生物学报》2021,61(12):3918-3927
沙门菌(Salmonella spp.)是公共卫生学上具有重要意义的人畜共患病病原菌。人、畜感染沙门菌后会引起伤寒、副伤寒、胃肠炎、败血症和肠外局灶性感染等疾病。抗生素是治疗沙门菌严重感染的有效手段,随着临床和畜牧业中抗生素的大量使用,使得沙门菌的耐药情况日益严重。整合子是普遍存在于细菌中的一种可移动基因元件,可有效捕获外源基因确保其表达,并复合于转座子、质粒等,使多种耐药基因在细菌种内或者种间进行传播。在过去的二十年中,随着新基因盒和复杂整合子的不断出现,导致整合子系统迅速进化。整合子在沙门菌耐药性传播过程中具有非常重要的作用,因此,本文对整合子系统的分子结构、分类、作用机制,以及沙门菌中存在的Ⅰ、Ⅱ、Ⅲ类整合子介导的耐药性及现有检测方法的研究进展进行综述,以期为沙门菌耐药性研究提供参考。  相似文献   

6.
Wild animals not normally exposed to antimicrobial agents can acquire antimicrobial agent-resistant bacteria through contact with humans and domestic animals and through the environment. In this study we assessed the frequency of antimicrobial resistance in generic Escherichia coli isolates from wild small mammals (mice, voles, and shrews) and the effect of their habitat (farm or natural area) on antimicrobial resistance. Additionally, we compared the types and frequency of antimicrobial resistance in E. coli isolates from swine on the same farms from which wild small mammals were collected. Animals residing in the vicinity of farms were five times more likely to carry E. coli isolates with tetracycline resistance determinants than animals living in natural areas; resistance to tetracycline was also the most frequently observed resistance in isolates recovered from swine (83%). Our results suggest that E. coli isolates from wild small mammals living on farms have higher rates of resistance and are more frequently multiresistant than E. coli isolates from environments, such as natural areas, that are less impacted by human and agricultural activities. No Salmonella isolates were recovered from any of the wild small mammal feces. This study suggests that close proximity to food animal agriculture increases the likelihood that E. coli isolates from wild animals are resistant to some antimicrobials, possibly due to exposure to resistant E. coli isolates from livestock, to the resistance genes of these isolates, or to antimicrobials through contact with animal feed.  相似文献   

7.
A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria.  相似文献   

8.
Aims: To investigate the prevalence and temporal patterns of antimicrobial resistance in wild rodents with no apparent exposure to antimicrobials. Methods and Results: Two sympatric populations of bank voles and wood mice were trapped and individually monitored over a 2‐ year period for faecal carriage of antimicrobial‐resistant Escherichia coli. High prevalences of ampicillin‐, chloramphenicol‐, tetracycline‐ and trimethoprim‐resistant E. coli were observed. A markedly higher prevalence of antimicrobial‐resistant E. coli was found in wood mice than in bank voles, with the prevalence in both increasing over time. Superimposed on this trend was a seasonal cycle with a peak prevalence of resistant E. coli in mice in early‐ to mid‐summer and in voles in late summer and early autumn. Conclusions: These sympatric rodent species had no obvious contact with antimicrobials, and the difference in resistance profiles between rodent species and seasons suggests that factors present in their environment are unlikely to be drivers of such resistance. Significance and Impact of the Study: These findings suggest that rodents may represent a reservoir of antimicrobial‐resistant bacteria, transmissible to livestock and man. Furthermore, such findings have implications for human and veterinary medicine regarding antimicrobial usage and subsequent selection of antimicrobial‐resistant organisms.  相似文献   

9.
Antibiotics underpin all of modern medicine, from routine major surgery through to caesarean sections and modern cancer therapies. These drugs have revolutionized how we practice medicine, but we are in a constant evolutionary battle to evade microbial resistance and this has become a major global public health problem. We have overused and misused these essential medicines both in the human and animal health sectors and this threatens the effectiveness of antimicrobials for future generations. We can only address the threat of antimicrobial resistance (AMR) through international collaboration across human and animal health sectors integrating social, economic and behavioural factors. Our global organizations are rising to the challenge with the recent World Health Assembly resolution on AMR and development of the Global Action plan but we must act now to avoid a return to a pre-antibiotic era.  相似文献   

10.
Surface water is prone to bacterial contamination as it receives wastes and pollutants from human and animal sources, and contaminated water may expose local populations to health risks. This review provides a brief overview on the prevalence and antimicrobial resistance (AR) phenotypes of Salmonella, Escherichia coli and Enterococcus, found in natural freshwaters. These bacteria are frequently detected in surface waters, sometimes as etiological agents of waterborne infections, and AR strains are not uncommonly identified in both developed and developing countries. Data relating to Salmonella, E. coli and Enterococcus present in environmental water are lacking, and in order to understand their development and dissemination using the One Health approach, understanding the prevalence, distribution and characteristics of the bacteria present in surface water as well as their potential sources is important. Furthermore, AR bacteria in natural watersheds are not well investigated and their impacts on human health and food safety are not well understood. As surface water is a receptacle for AR bacteria from human and animal sources and a vehicle for their dissemination, this is a crucial data gap in understanding AR and minimizing its spread. For this review, Salmonella, E. coli and Enterococcus were chosen to evaluate the presence of primary pathogens and opportunistic pathogens as well as to monitor AR trends in the environmental water. Studies around the world have demonstrated the widespread distribution of pathogenic and AR bacteria in surface waters of both developing and developed countries, confirming the importance of environmental waters as a reservoir for these bacteria and the need for more attention on the environmental bacteria for emerging AR.  相似文献   

11.
AIMS: The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. MATERIALS AND METhods: Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. CONCLUSIONS: The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.  相似文献   

12.
Toxigenic Escherichia coli (E. coli) are an important cause of gastroenteritis in developing countries. In Ethiopia, gastroenteritis due to food-borne disease is a leading cause of death. Yet, there is no surveillance for E. coli O157 and little is known about the carriage of this pathogen in Ethiopia’s livestock. This study aimed to assess the prevalence and levels of antimicrobial resistance of E. coli O157 in goat meat, feces, and environmental samples collected at a large abattoir in the Somali region of Ethiopia. The samples were enriched in modified tryptone broth containing novobiocin, and plated onto sorbitol MacConkey agar. Isolates were confirmed using indole test and latex agglutination. Antimicrobial susceptibility testing was conducted using the disk diffusion method. A total of 235 samples, including 93 goat carcass swabs, 93 cecal contents, 14 water, 20 hand, and 15 knife swabs were collected. Overall, six (2.5%) samples were contaminated with E. coli O157 of which two (2.1%) were isolated from cecal contents, three (3.2%) from carcass swabs, and one (7.1%) from water. All isolates were resistant to at least two of the 18 antimicrobials tested. Two isolates (33.3%) were resistant to more than five antimicrobials. Abattoir facilities and slaughter techniques were conducive to carcass contamination. This study highlights how poor hygiene and slaughter practice can result in contaminated meat, which is especially risky in Ethiopia because of the common practice of eating raw meat. We detect multi-resistance to drugs not used in goats, suggesting that drugs used to treat human infections may be the originators of antimicrobial resistance in livestock in this ecosystem. The isolation of multidrug-resistant E. coli O157 from goats from a remote pastoralist system highlights the need for global action on regulating and monitoring antimicrobial use in both human and animal populations.  相似文献   

13.
Water quality has become a major environmental concern due to the presence of potentially harmful bacteria, protozoa, and chemicals. In particular, pharmaceuticals have recently gained prominence due to their potential negative effects on both the aquatic environment and on human health. The antimicrobial classes of penicillins, cephalosporins, macrolides, and fluoroquinolones are among the most frequent pharmaceuticals detected in the environment in Europe. The common route of entry of these antimicrobials into the environment is thought to be through wastewater treatment plant (WWTP) effluent. The main concern with regard to antimicrobial agents is the potential formation of antimicrobial resistance. Evidence suggests WWTPs may promote development of antimicrobial resistance. This study reviews antimicrobial residues typically found in treated water, their sources, process barriers, entry into the environment, and consequent human health concerns. The effects of WWTP on residues and the formation of antimicrobial-resistant bacteria are also discussed in addition to current risk assessment approaches for evaluating human health concerns, including development of antimicrobial resistance and resultant therapeutic failure. The uncertainty surrounding the fate and impact of different classes of antimicrobials in the environment is highlighted in addition to the lack of standardised methods to detect antimicrobials and to assess selective pressures.  相似文献   

14.
The impact on wildlife health of the increase in the use of antimicrobial agents with the intensification of livestock production remains unknown. The composition, richness and prevalence of cloacal microflora as well as bacterial resistance to antibiotics in nestlings and full-grown Egyptian vultures Neophron percnopterus were assessed in four areas of Spain in which the degree of farming intensification differs. Differences in diet composition, especially the role of stabled livestock carrion, appear to govern the similarities of bacterial flora composition among continental populations, while the insular vulture population (Fuerteventura, Canary Islands) showed differences attributed to isolation. Evidence of a positive relationship between the consumption of stabled livestock carrion and bacterial resistance to multiple antibiotics was found. Bacterial resistance was high for semisynthetic penicillins and enrofloxacin, especially in the area with the most intensive stabled livestock production. The pattern of antibiotic resistance was similar for the different bacterial species within each area. Bacterial resistance to antibiotics may be determined by resistance of bacteria present in the livestock meat remains that constituted the food of this species, as indicated by the fact that resistance to each antibiotic was correlated in Escherichia coli isolated from swine carrion and Egyptian vulture nestlings. In addition, resistance in normal faecal bacteria (present in the microflora of both livestock and vultures) was higher than in Staphylococcus epidermidis, a species indicator of the transient flora acquired presumably through the consumption of wild rabbits. Potential negative effects of the use of antimicrobials in livestock farming included the direct ingestion of these drug residues and the effects of bacterial antibiotic resistance on the health of scavengers.  相似文献   

15.
Since World War II the use of antimicrobial products associated with food animal production has increased. Antimicrobials along with evolving production practices have significantly increased throughput, animal welfare, and improved health. Concerns surrounding the growing significance of emerging and in some cases rapidly disseminating antibiotic (antimicrobial) resistant bacterial pathogens among human and livestock populations has stimulated a reassessment of this application. The negative publicity has led many consumers and activist groups to believe that protein derived from food animals grown in the absence of those drugs is safer than products derived from the conventionally reared. There is a general fear that antimicrobial usage in agriculture threatens the sustainability of human therapeutic agents and the public wellbeing. The issue has gradually emerged from "fringe group paranoia" to mainstream - finally impacting consumer choices. Antimicrobial resistance concerns have stimulated a significant reaction by the US animal agriculture industry. Numerous pig production entities, large and small, have attempted to create additional pork product value by developing niche marketing opportunities. Thus far most of the subtherapeutic in-feed antimicrobial reduction has been voluntary in the US. Two production areas have developed where reduced usage occurs. First is the growth of antibiotic free production (ABF) and second is an increased use of treatment levels which avoids subtherapeutic criticism. The bulk of this article is directed at new production practices, pig health management, disease elimination, and biosecurity efforts that result from early industry attempts at reduced or excluded antimicrobial pig production. Raising antimicrobial (antibiotic) free (ABF) pork from birth is challenging for a variety of reasons. Some of these challenges can be cost effectively dealt with while others are difficult if not impossible to control in modern production environments. Healthy pig production is essential for sustainable ABF operations.  相似文献   

16.
Increased livestock production in developing countries is seen as one way to improve world food supply. However, the impact of increased livestock production on household health and nutrition is unknown. This paper examines linkages between commercialization of livestock production and household nutrition. Linkages include income, resource allocation, food consumption, and human disease risk. Data from Uasin Gishu district, Kenya, show higher consumption of animal products for large commercialized farms, along with greater control of milk sales by men. Effects of livestock development may thus differ by gender, and may include both positive and negative impacts.  相似文献   

17.
The production of livestock and poultry faces major challenges to meet the global demand for meat and dairy products and eggs due to a steady increase in the world’s population and the ban of antibiotics in animal production. This ban has forced animal nutritionists to seek for natural alternatives to antibiotics. In this context, the yeast Saccharomyces cerevisiae has received considerable attention in the last decade. It has been reported that feed supplementation with live yeast cells improve feed efficiency, enhance feed digestibility, increase animal performance, reduce the number of pathogenic bacteria, improve animal health and reduce the negative environmental impacts of livestock production. The current review sheds light on the effects of the use of live S. cerevisiae cells in the diets of nonruminant and pseudo-ruminant’s animals and the mechanisms by which they exert its effects. This review work revealed that the addition of S. cerevisiae in poultry feed causes a phenomenon called competitive exclusion of pathogenic bacteria capable of causing disease adhere to the yeast surface, and so removing a large amount of harmful micro-organisms and allowing the Animal defend more effectively, the production of antimicrobial agents, the balancing the gut microbiota and stimulation of host adaptive immune system and improving gut morphological structure, thus these benefits are reflected on the overall poultry health. In addition, in the presence of live S. cerevisiae cells, the immunity of rabbits was improved due to the high number of white blood cell. In addition, apparent digestibility of acid and neutral detergent fibre was improved in horses and rabbits. Saccharomyces cerevisiae in pig diets augment mucosal immunity by increasing IgM and IgA activity against pathogens, enhance intestinal development and function, adsorb mycotoxins, modulate gut microbiota and reduce postweaning diarrhoea.  相似文献   

18.
Mitigating climate change: the role of domestic livestock   总被引:1,自引:0,他引:1  
Livestock contribute directly (i.e. as methane and nitrous oxide (N2O)) to about 9% of global anthropogenic greenhouse gas (GHG) emissions and around 3% of UK emissions. If all parts of the livestock production lifecycle are included (fossil fuels used to produce mineral fertilizers used in feed production and N2O emissions from fertilizer use; methane release from the breakdown of fertilizers and from animal manure; land-use changes for feed production and for grazing; land degradation; fossil fuel use during feed and animal production; fossil fuel use in production and transport of processed and refrigerated animal products), livestock are estimated to account for 18% of global anthropogenic emissions, but less than 8% in the UK. In terms of GHG emissions per unit of livestock product, monogastric livestock are more efficient than ruminants; thus in the UK, while sheep and cattle accounted for 32% of meat production in 2006, they accounted for 48% of GHG emissions associated with meat production. More efficient management of grazing lands and of manure can have a direct impact in decreasing emissions. Improving efficiency of livestock production through better breeding, health interventions or improving fertility can also decrease GHG emissions through decreasing the number of livestock required per unit product. Increasing the energy density of the diet has a dual effect, decreasing both direct emissions and the numbers of livestock per unit product, but, as the demands for food increase in response to increasing human population and a better diet in some developing countries, there is increasing competition for land for food v. energy-dense feed crops. Recalculating efficiencies of energy and protein production on the basis of human-edible food produced per unit of human-edible feed consumed gave higher efficiencies for ruminants than for monogastric animals. The policy community thus have difficult decisions to make in balancing the negative contribution of livestock to the environment against the positive benefit in terms of food security. The animal science community have a responsibility to provide an evidence base which is objective and holistic with respect to these two competing challenges.  相似文献   

19.
Antibiotic resistance and the shortage of novel antimicrobials are among the biggest challenges facing society. One of the major factors contributing to resistance is the use of frontline clinical antibiotics in veterinary practice. In order to properly manage dwindling antibiotic resources, we must identify antimicrobials that are specifically targeted to veterinary applications. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many gram-positive bacteria, including human and animal pathogens such as Staphylococcus, Bacillus, Listeria, and Clostridium. Although not currently used in human medicine, nisin is already employed commercially as an anti-mastitis product in the veterinary field. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) and also against staphylococci and streptococci associated with bovine mastitis. However, newly emerging pathogens such as methicillin resistant Staphylococcus pseudintermedius (MRSP) pose a significant threat in terms of veterinary health and as a reservoir for antibiotic resistance determinants. In this study we created a nisin derivative with enhanced antimicrobial activity against S. pseudintermedius. In addition, the novel nisin derivative exhibits an enhanced ability to impair biofilm formation and to reduce the density of established biofilms. The activities of this peptide represent a significant improvement over that of the wild-type nisin peptide and merit further investigation with a view to their use to treat S. pseudintermedius infections.  相似文献   

20.
Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which corresponds to the amounts of antimicrobial agents used in food animal production in those countries. Similar genes were found to encode resistance in the different countries, but the tet(L) and tet(S) genes were more frequently found among isolates from Spain. A recently identified transferable copper resistance gene was found in all copper-resistant isolates from the different countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号