首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the bacterium Pseudomonas aeruginosa, the synthesis and secretion of extracellular protease is a typical cooperative behavior regulated by quorum sensing. However, this type of cooperative behavior is easily exploited by other individuals who do not synthesize public goods, which is known as the “tragedy of the commons”. Here P. aeruginosa was inoculated into casein media with different nitrogen salts added. In casein broth, protease (a type of public good) is necessary for bacterial growth. After 30 days of sequential transfer, some groups propagated stably and avoided “tragedy of the commons”. The evolved cooperators who continued to synthesize protease were isolated from these stable groups. By comparing the characteristics of quorum sensing in these cooperators, an identical evolutionary pattern was found. A variety of cooperative behaviors regulated by quorum sensing, such as the synthesis and secretion of protease and signals, were significantly reduced during the process of evolution. Such reductions improved the efficiency of cooperation, helping to prevent cheating. In addition, the production of pyocyanin, which is regulated by the RhlIR system, increased during the process of evolution, possibly due to its role in stabilizing the cooperation. This study contributes towards our understanding of the evolution of quorum sensing of P. aeruginosa.  相似文献   

2.
Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour.  相似文献   

3.
4.
Pseudomonas aeruginosa is a major pathogen causing chronic pulmonary infections; for example, 80% of cystic fibrosis patients get infected by this bacterium as the disease progresses. Such chronic infections are challenging because P. aeruginosa exhibits high-level tolerance to antibiotics by forming biofilms (multicellular structures attached to surfaces), by entering dormancy and forming antibiotic tolerant persister cells, and by conversion to the mucoid phenotype. Recently, we reported that a synthetic quorum sensing inhibitor, (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8), can sensitize both planktonic and biofilm-associated persister cells of P. aeruginosa PAO1 to antibiotics at the concentrations non-inhibitory to its growth. In this study, we further characterized the effects of this compound on the mucoid strain P. aeruginosa PDO300. BF8 was found to reduce persistence during the growth of PDO300 and effectively kill the persister cells isolated from PDO300 cultures. In addition to planktonic cells, BF8 was also found to inhibit biofilm formation of PDO300 and reduce associated persistence. These findings broaden the activities of this class of compounds and indicate that BF8 also has other targets in P. aeruginosa in addition to quorum sensing.  相似文献   

5.
In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required and up-regulated during swarming motility, which is triggered by high cell densities. As high density bacterial populations also display elevated antibiotics resistance, studies have demonstrated swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study was to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduces PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a twofold to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.  相似文献   

6.
7.
Foodborne pathogens are one of the major cause of food-related diseases and food poisoning. Bacterial biofilms and quorum sensing (QS) mechanism of cell–cell communication have also been found to be associated with several outbreaks of foodborne diseases and are great threat to food safety. Therefore, In the present study, we investigated the activity of three tetrahedrally coordinated copper(I) complexes against quorum sensing and biofilms of foodborne bacteria. All the three complexes demonstrated similar antimicrobial properties against the selected pathogens. Concentration below the MIC i.e. at sub-MICs all the three complexes interfered significantly with the quorum sensing regulated functions in C. violaceum (violacein), P. aeruginosa (elastase, pyocyanin and alginate production) and S. marcescens (prodigiosin). The complexes demonstrated potent broad-spectrum biofilm inhibition in Pseudomonas aeruginosa, E. coli, Chromobacterium violaceum, Serratia marcescens, Klebsiella pneumoniae and Listeria monocytogenes. Biofilm inhibition was visualized using SEM and CLSM images. Action of the copper(I) complexes on two key QS regulated functions contributing to biofilm formation i.e. EPS production and swarming motility was also studied and statistically significant reduction was recorded. These results could form the basis for development of safe anti-QS and anti-biofilm agents that can be utilized in the food industry as well as healthcare sector to prevent food-associated diseases.  相似文献   

8.
9.
Chronic respiratory infections are a major cause of morbidity and mortality, most particularly in Cystic Fibrosis (CF) patients. The recent finding that gastro-esophageal reflux (GER) frequently occurs in CF patients led us to investigate the impact of bile on the behaviour of Pseudomonas aeruginosa and other CF-associated respiratory pathogens. Bile increased biofilm formation, Type Six Secretion, and quorum sensing in P. aeruginosa, all of which are associated with the switch from acute to persistent infection. Furthermore, bile negatively influenced Type Three Secretion and swarming motility in P. aeruginosa, phenotypes associated with acute infection. Bile also modulated biofilm formation in a range of other CF-associated respiratory pathogens, including Burkholderia cepacia and Staphylococcus aureus. Therefore, our results suggest that GER-derived bile may be a host determinant contributing to chronic respiratory infection.  相似文献   

10.

Background

Members of swarming bacterial consortia compete for nutrients but also use a co-operation mechanism called quorum sensing (QS) that relies on chemical signals as well as other secreted products (“public goods”) necessary for swarming. Deleting various genes of this machinery leads to cheater mutants impaired in various aspects of swarming cooperation.

Methodology/Principal Findings

Pairwise consortia made of Pseudomonas aeruginosa, its QS mutants as well as B. cepacia cells show that a interspecies consortium can “combine the skills” of its participants so that the strains can cross together barriers that they could not cross alone. In contrast, deleterious mutants are excluded from consortia either by competition or by local population collapse. According to modeling, both scenarios are the consequence of the QS signalling mechanism itself.

Conclusion/Significance

The results indirectly explain why it is an advantage for bacteria to maintain QS systems that can cross-talk among different species, and conversely, why certain QS mutants which can be abundant in isolated niches, cannot spread and hence remain localized.  相似文献   

11.
Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections.  相似文献   

12.
Bacterial quorum sensing (QS) often coordinates the expression of other, generally more costly public goods involved in virulence and nutrient acquisition. In many Proteobacteria, the basic QS circuitry consists of a synthase that produces a diffusible acyl-homoserine lactone and a cognate receptor that activates public goods expression. In some species, the circuitry also contains negative regulators that have the potential to modulate the timing and magnitude of activation. In this study, we experimentally investigated the contribution of this regulatory function to the evolutionary stability of public goods cooperation in the opportunistic pathogen Pseudomonas aeruginosa. We compared fitness and public goods expression rates of strains lacking either qteE or qscR, each encoding a distinct negative regulator, with those of the wild-type parent and a signal-blind receptor mutant under defined growth conditions. We found that (1) qteE and qscR mutations behave virtually identically and have a stronger effect on the magnitude than on the timing of expression, (2) high expression in qteE and qscR mutants imposes a metabolic burden under nutrient conditions that advance induction and (3) high expression in qteE and qscR mutants increases population growth when QS is required, but also permits invasion by both wild-type and receptor mutant strains. Our data indicate that negative regulation of QS balances the costs and benefits of public goods by attenuating expression after transition to the induced state. As the cells cannot accurately assess the amount of cooperation needed, such bet-hedging would be advantageous in changing parasitic and nonparasitic environments.  相似文献   

13.
H Du  Z Xu  M Anyan  O Kim  WM Leevy  JD Shrout  M Alber 《Biophysical journal》2012,103(3):601-609
This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces.  相似文献   

14.
15.
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system.  相似文献   

16.
17.
Bacterial populations frequently act as a collective by secreting a wide range of compounds necessary for cell-cell communication, host colonization and virulence. How such behaviours avoid exploitation by spontaneous 'cheater' mutants that use but do not contribute to secretions remains unclear. We investigate this question using Pseudomonas aeruginosa swarming, a collective surface motility requiring massive secretions of rhamnolipid biosurfactants. We first show that swarming is immune to the evolution of rhlA(-) 'cheaters'. We then demonstrate that P. aeruginosa resists cheating through metabolic prudence: wild-type cells secrete biosurfactants only when the cost of their production and impact on individual fitness is low, therefore preventing non-secreting strains from gaining an evolutionary advantage. Metabolic prudence works because the carbon-rich biosurfactants are only produced when growth is limited by another growth limiting nutrient, the nitrogen source. By genetically manipulating a strain to produce the biosurfactants constitutively we show that swarming becomes cheatable: a non-producing strain rapidly outcompetes and replaces this obligate cooperator. We argue that metabolic prudence, which may first evolve as a direct response to cheating or simply to optimize growth, can explain the maintenance of massive secretions in many bacteria. More generally, prudent regulation is a mechanism to stabilize cooperation.  相似文献   

18.
Bacterial quorum sensing plays a very important role in the regulation of biofilm formation, virulence, conjugation, sporulation, and swarming mobility. Inhibitors of bacterial quorum sensing are important research tools and potential therapeutic agents. In this paper, we describe for the first time the discovery of several boronic acids as single digit micromolar inhibitors of bacterial quorum sensing in Vibrio harveyi.  相似文献   

19.
Abstract

Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.  相似文献   

20.
(R)-Bgugaine is a natural pyrrolidine alkaloid from Arisarum vulgare, which shows antifungal and antibacterial activity. In this Letter, we have accomplished the simple synthesis of norbgugaine (demethylated form of natural bgugaine) employing Wittig olefination and cat. hydrogenation as the key steps and its biological studies are reported for the first time. The synthesized norbgugaine was evaluated for inhibition of quorum sensing mediated virulence factors (motility, biofilm formation, pyocyanin pigmentation, rhamnolipid production and LasA protease) in Pseudomonas aeruginosa wherein swarming motility is reduced by 95%, and biofilm formation by 83%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号