首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several mycobacterial strains, such as Mycobacterium flavescens, Mycobacterium gastri, Mycobacterium neoaurum, Mycobacterium parafortuitum, Mycobacterium peregrinum, Mycobacterium phlei, Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium vaccae, were found to grow on carbon monoxide (CO) as the sole source of carbon and energy. These bacteria, except for M. tuberculosis, also utilized methanol as the sole carbon and energy source. A CO dehydrogenase (CO-DH) assay, staining by activity of CO-DH, and Western blot analysis using an antibody raised against CO-DH of Mycobacterium sp. strain JC1 (formerly Acinetobacter sp. strain JC1 [J. W. Cho, H. S. Yim, and Y. M. Kim, Kor. J. Microbiol. 23:1-8, 1985]) revealed that CO-DH is present in extracts of the bacteria prepared from cells grown on CO. Ribulose bisphosphate carboxylase/oxygenase (RubisCO) activity was also detected in extracts prepared from all cells, except M. tuberculosis, grown on CO. The mycobacteria grown on methanol, except for M. gastri, which showed hexulose phosphate synthase activity, did not exhibit activities of classic methanol dehydrogenase, hydroxypyruvate reductase, or hexulose phosphate synthase but exhibited N,N-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase and RuBisCO activities. Cells grown on methanol were also found to have dihydroxyacetone synthase. Double immunodiffusion revealed that the antigenic sites of CO-DHs, RuBisCOs, and dihydroxyacetone synthases in all mycobacteria tested are identical with those of the Mycobacterium sp. strain JC1 enzymes.  相似文献   

2.
Abstract Soluble fractions prepared from cells of Pseudomonas carboxydovorans bearing a small plasmid (1.76 × 106) exhibited proteolytic activity on the β-subunit of CO dehydrogenase (CO-DH) in plasmid-cured cells of the same strain, implying that the plasmid carries gene(s) for processing the β subunit of the enzyme at the post-translational level. The protease was found to be a constitutive enzyme. It did not hydrolyze the β subunit of CO-DH in Pseudomonas carboxydohydrogena . Analysis of CO-DH after transformation of the cured cells with the small plasmid confirmed that the plasmid plays a role in the modification of the β subunit of CO-DH in P. carboxydovorans .  相似文献   

3.
4.
Y S Do  E Kim    Y M Kim 《Journal of bacteriology》1990,172(3):1267-1270
Extracts of heterotrophically grown cells of Pseudomonas carboxydovorans were found to contain an inhibitor of carbon monoxide dehydrogenase (CO-DH). The inhibitor activity was not detected in CO-autotrophically grown cells. The inhibitor was extremely stable to heat treatment based on the extent of inhibition of CO-DH activity. The extent of inhibition was proportional to the amount of cell extract added to the reaction mixture. The inhibition was independent of a prior incubation period of the extracts with CO-DH. The inhibitor was precipitable with ammonium sulfate, phenol, and trichloroacetic acid. It was passed through benzoylated dialysis tubing and Amicon ultrafiltration membrane YM2. Denaturing and nondenturing polyacrylamide gel electrophoresis of CO-DH inactivated by inhibitor revealed that the mobilities of native enzyme and subunits were identical to those of active CO-DH. The inhibitor-treated CO-DH retained its original antigenic sites and exhibited enzyme activity upon activity staining. The CO-DH inhibitor of P. carboxydovorans was also active on CO-DHs from Pseudomonas carboxydohydrogena, Acinetobacter sp. strain JC1, and Pseudomonas carboxydoflava.  相似文献   

5.
The gene encoding of an alcohol dehydrogenase C (ADHC) from Mycobacterium smegmatis was cloned and sequenced. The protein encoded by this gene has 78% identity with Mycobacterium tuberculosis and Mycobacterium bovis BCG ADHC. The M. smegmatis ADHC was purified from M. smegmatis and the kinetic parameters of this enzyme showed that using NADPH as electron donor it has a strong preference for aliphatic and aromatic aldehyde substrates. Like the M. bovis BCG ADHC, this enzyme is more likely to act as an aldehyde reductase than as an alcohol dehydrogenase. The discovery of such an ADHC in a fast-growing, and easily engineered mycobacterial species opens the way to the utilisation of this M. smegmatis enzyme as a convenient model for the study of the physiological role of this alcohol dehydrogenase in mycobacteria.  相似文献   

6.
Abstract: We examined nitric oxide (NO)-induced cell death in NG108-15 cells using NO donors. Both sodium nitroprusside (SNP) and S -nitroso- N -acetylpenicillamine caused lactate dehydrogenase (LDH) leakage from NG108-15 cells. NO is known to increase the amount of radioisotopic labeled glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of [32P]NAD and to inhibit the enzyme activity. To clarify the relationship between the NO-induced inhibition of GAPDH activity and cell death, we studied the effect of koningic acid (KA), a potent selective inhibitor of GAPDH. Both SNP and KA elicited LDH leakage, chromosomal condensation, and fragmentation of nuclei in NG108-15 cells. Gel electrophoretic analysis of cellular DNA extracted from SNP- and KA-treated cells revealed the internucleosomal DNA fragmentation typical of apoptosis in these cultures. The results suggested that in NG108-15 cells, (a) the inhibition of GAPDH activity results in apoptosis and (b) SNP-induced cell death is partly due to the NO-induced inhibition of GAPDH, perhaps by stimulating the binding of NAD to GAPDH.  相似文献   

7.
Abstract Isolation of plasmid DNA followed by plasmid curing was carried out to examine the relationship of plasmid to carbon monoxide dehydrogenase (CO-DH) production in carboxydobacteria. A small plasmid of almost identical size (1.52−1.76 × 106) was present in Pseudomonas carboxydovorans, Azotobacter sp.1, and Azomonas sp.2. Azomonas sp.1 contained two kinds of plasmids (1.5 × 106 and 2.47 × 106). No plasmids were found in Pseudomonas carboxydohydrogena , JC1, and HY1. A plasmid-cured clone of P. carboxydovorans was obtained by growing the cells at 37°C. The cured cell was able to grow CO autotrophically on solid, but not in liquid, medium. CO-DH of the cured cell was active and consisted of three subunits similar to those found in the wild-type enzyme, with the exception that the β subunit of the enzyme was larger than that of the wild-type enzyme. These results suggest that the small plasmids do not carry genes encoding CO-DH but may have gene(s) for processing the β subunit of the enzyme.  相似文献   

8.
9.
Tuberculosis (TB) remains to be a global health problem. New drugs are badly needed to drastically reduce treatment time and overcome some of the challenges with tuberculosis treatment, such as multi-drug resistant (MDR) strain infected patients or tuberculosis/HIV co-infected patients. The essentiality of mycobacterial aromatic amino acid biosynthesis pathways and their absence from human host indicate that the member enzymes of these pathways promising drug targets for therapeutic agents against pathogen mycobacteria. Prephenate dehydrogenase (PDH) is a key regulatory enzyme in tyrosine biosynthesis, catalyzing the NAD(+)-dependent conversion of prephenate to p-hydroxyphenylpyruvate, making it a potential drug target for antibiotics discovery. The recombinant PDH with an N-terminal His-tag (His-rMtPDH) was first purified in Escherichia coli, and using enterokinase rMtPDH was obtained by cleaving the N-terminal fusion partner. The effect of pH, temperature and the cation-Na(+) on purified enzyme activity was characterized. The N-terminal fusion partner was found to have little effect on the biochemical properties of PDH. We also provide in vitro evidence that Mycobacterium tuberculosis PDH does not possess any chorismate mutase (CM) activity, which suggests that, unlike many other enteric bacteria (where PDH exists as a fusion protein with CM), M. tuberculosis PDH is a monofunctional protein.  相似文献   

10.
In a previous work, we presented evidence for the presence of a protein encoded by At5g50600 in oil bodies (OBs) from Arabidopsis thaliana [P. Jolivet, E. Roux, S. D'Andrea, M. Davanture, L. Negroni, M. Zivy, T. Chardot, Protein composition of oil bodies in Arabidopsis thaliana ecotype WS, Plant Physiol. Biochem. 42 (2004) 501-509]. Using specific antibodies and proteomic techniques, we presently confirm the existence of this protein, which is a member of the short-chain steroid dehydrogenase reductase superfamily. We have measured its activity toward various steroids (cholesterol, dehydroepiandrosterone, cortisol, corticosterone, estradiol, estrone) and NAD(P)(H), either within purified OBs or as a purified bacterially expressed chimera. Both enzymatic systems (OBs purified from A. thaliana seeds as well as the chimeric enzyme) exhibited hydroxysteroid dehydrogenase (HSD) activity toward estradiol (17beta-hydroxysteroid) with NAD+ or NADP+, NADP+ being the preferred cofactor. Low levels of activity were observed with cortisol or corticosterone (11beta-hydroxysteroids), but neither cholesterol nor DHEA (3beta-hydroxysteroids) were substrates, whatever the cofactor used. Similar activity profiles were found for both enzyme sources. Purified OBs were found to be also able to catalyze estrone reduction (17beta-ketosteroid reductase activity) with NADPH. The enzyme occurring in A. thaliana OBs can be classified as a NADP+-dependent 11beta-,17beta-hydroxysteroid dehydrogenase/17beta-ketosteroid reductase. This enzyme probably corresponds to AtHSD1, which is encoded by At5g50600. However, its physiological role and substrates still remain to be determined.  相似文献   

11.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

12.
A soil bacterium, Mycobacterium sp. B-009, is able to grow on racemic 1,2-propanediol (PD). The strain was revealed to oxidize 3-methyl-1,5-pentanediol (MPD) to 5-hydroxy-3-methyl-pentanoic acid (HMPA) during growth on PD. MPD was converted into an almost equimolar amount of the S-form of HMPA (S-HMPA) at 72%ee, suggesting the presence of an enantioselective MPD dehydrogenase (MPD-DH). As expected, an NADP+-dependent alcohol dehydrogenase, which catalyzes the initial step of MPD oxidation, was detected and purified from the cell-free extract. This enzyme was suggested to be a homodimeric medium-chain alcohol dehydrogenase/reductase (MDR). The catalytic and kinetic parameters indicated that MPD is the most suitable substrate for the enzyme. The enzyme was encoded by a 1047-bp gene (mpd1) and several mycobacterial strains were found to have putative MDR genes similar to mpd1. In a phylogenetic tree, MPD-DH formed an independent clade together with the putative MDR of Mycobacterium neoaurum, which produces opportunistic infections.  相似文献   

13.
Glutaryl-CoA dehydrogenase catalyzes the oxidative decarboxylation of the γ-carboxylate of the substrate, glutaryl-CoA, to yield crotonyl-CoA and CO(2). The enzyme is a member of the acyl-CoA dehydrogenase (ACD) family of flavoproteins. In the present study, the catalytic properties of this enzyme, including its substrate specificity, isomerase activity, and interactions with inhibitors, were systematically studied. Our results indicated that the enzyme has its catalytic properties very similar to those of short-chain and medium-chain acyl-CoA dehydrogenase except its additional decarboxylation reaction. Therefore, the inhibitors of fatty acid oxidation targeting straight chain acyl-CoA dehydrogenase could also function as inhibitors for amino acid metabolism of lysine, hydroxylysine, and tryptophan.  相似文献   

14.
Mitochondrial medium-chain acyl-CoA dehydrogenase is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. We cloned the gene of rat mitochondrial medium-chain acyl-CoA dehydrogenase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 3' of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel Hi-Trap chelating metal affinity column in 88% yield to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase was 4.0 U/mg. Arg256 is a highly conserved amino acid, which may play an important role in enzymatic reaction based on the crystal structure of medium-chain acyl-CoA dehydrogenase. We constructed four mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Arg256 is a very important residue of rat mitochondrial medium-chain acyl-CoA dehydrogenase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial medium-chain acyl-CoA dehydrogenase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of medium-chain acyl-CoA dehydrogenase.  相似文献   

15.
成簇的规律间隔的短回文重复序列干扰(clustered regularly interspaced short palindromic repeat interference,CRISPRi)是一种新型转录抑制技术,该系统包含RNA介导的DNA内切酶dCas9和针对目的基因的特异性单向导RNA(single guide RNA,sgRNA),通过形成DNA识别复合物特异性识别相应DNA序列以抑制目的基因的转录。异柠檬酸脱氢酶(isocitrate dehydrogenase,ICD)是三羧酸循环中的关键代谢酶,在分枝杆菌的碳代谢过程中发挥重要作用。本研究利用CRISPRi高效抑制分枝杆菌特定基因表达的方法构建耻垢分枝杆菌icd敲低(icd knockdown,ICD-KD)株。定量聚合酶链反应(quantitative polymerase chain reaction,qPCR)和蛋白免疫印迹检测结果显示,耻垢分枝杆菌中icd转录水平与ICD蛋白表达水平显著下降,表明采用CRISPRi技术成功构建了耻垢分枝杆菌ICD-KD株。进一步研究ICD-KD株的生长情况,测定其在固体培养基点板及液体培养基中的生长曲线,结果均显示ICD-KD株生长速率明显减慢,同时菌体内ICD酶活显著降低,提示ICD对分枝杆菌的生长存活起重要作用。本研究使用CRISPRi技术快速构建了分枝杆菌必需基因的敲低菌株,为后续研究分枝杆菌ICD在碳源代谢通路中的功能和碳通量流向调控机制提供了重要基础。  相似文献   

16.
Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 microM KCN and was rapidly inactivated by O2. The enzyme was nearly homogeneous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent Km of 5 mM for CO and a Vmax of 1,300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed.  相似文献   

17.
Mitochondrial 3-hydroxyacyl-CoA dehydrogenase is a key enzyme in the beta-oxidation of fatty acids. The deficiency of this enzyme in patients has been previously reported. We cloned the gene of rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase in a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal affinity column to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase was 452 U/mg. Ser137 is a highly conserved amino acid, which, it has been suggested, is an important residue because of its proximity to the modeled L-3-hydroxyacyl-CoA substrate in the crystal structure of 3-hydroxyacyl-CoA dehydrogenase. We constructed three mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Ser137 is a very important residue of rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial 3-hydroxyacyl-CoA dehydrogenase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of 3-hydroxyacyl-CoA dehydrogenase.  相似文献   

18.
Aldehyde dehydrogenase has been purified to homogeneity from mitochondria of potato tubers and pea epicotyls. Although the enzyme had a high affinity for glycolaldehyde it also had a high affinity for a number of other aliphatic and arylaldehydes. It is proposed that the codification glycolaldehyde dehydrogenase (EC 1.2.1.22) should be abandoned in favour of mitochondrial aldehyde dehydrogenase (EC 1.2.1.3). The purified enzyme showed esterase activity and had properties similar to those reported for the mammalian mitochondrial aldehyde dehydrogenase. Although the natural substrate(s) for the enzyme is not known, the kinetic properties of the enzyme are consistent with it playing a role in the oxidation of acetaldehyde, glycolaldehyde and indoleacetaldehyde.  相似文献   

19.
20.
Yang X  Dubnau E  Smith I  Sampson NS 《Biochemistry》2007,46(31):9058-9067
New approaches are required to combat Mycobacterium tuberculosis (Mtb), especially the multi-drug resistant and extremely drug resistant organisms (MDR-TB and XDR-TB). There are many reports that mycobacteria oxidize 3beta-hydroxysterols to 3-ketosteroids, but the enzymes responsible for this activity have not been identified in mycobacterial species. In this work, the Rv1106c gene that is annotated as a 3beta-hydroxysteroid dehydrogenase in Mtb has been cloned and heterologously expressed. The purified enzyme was kinetically characterized and found to have a pH optimum between 8.5 and 9.5. The enzyme, which is a member of the short chain dehydrogenase superfamily, uses NAD+ as a cofactor and oxidizes cholesterol, pregnenolone, and dehydroepiandrosterone to their respective 3-keto-4-ene products. The enzyme forms a ternary complex with NAD+ binding before the sterol. The enzyme shows no substrate preference for dehydroepiandrosterone versus pregnenolone with second-order rate constants (kcat/Km) of 3.2 +/- 0.4 and 3.9 +/- 0.9 microM-1 min-1, respectively, at pH 8.5, 150 mM NaCl, 30 mM MgCl2, and saturating NAD+. Trilostane is a competitive inhibitor of dehydroepiandrosterone with a Ki of 197 +/- 8 microM. The expression of the 3beta-hydroxysteroid dehydrogenase in Mtb is intracellular. Disruption of the 3beta-hydroxysteroid dehydrogenase gene in Mtb abrogates mycobacterial cholesterol oxidation activity. These data are consistent with the Rv1106c gene being the one responsible for 3beta-hydroxysterol oxidation in Mtb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号