首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Patients with advanced prostate cancer often exhibit increased activation of the coagulation system. The key activator of the coagulation cascade is the serine protease thrombin which is capable of eliciting numerous cellular responses. We previously reported that the thrombin receptor PAR1 is overexpressed in prostate cancer. To investigate further the role of PAR1 in prostate cancer metastasis, we examined the effects of thrombin activation on cell adhesion and motility in PC-3 prostate cancer cells. Activation of PAR1-induced dynamic cytoskeletal reorganization and reduced PC-3 binding to collagen I, collagen IV, and laminin (P < 0.01) but not fibronectin. Expression of the cell surface integrin receptors did not change as assessed by flow cytometry. Immunofluorescence microscopy revealed that PAR1 stimulation caused reorganization of the focal adhesions, suggesting that PAR1 activation in PC-3 cells may be modulating cell adhesion through integrin function but not expression. Furthermore, RhoA was activated upon stimulation with thrombin with subsequent cell contraction, decreased cell adhesion, and induced migration towards monocyte chemoattractant protein 1 (MCP-1; CCL2). Thus, it appears that thrombin stimulation plays a role in prostate cancer metastasis by decreasing cell adhesion to the extracellular matrix and positioning the cell in a "ready state" for migration in response to a chemotactic signal. Further exploration is needed to determine whether PAR1 activation affects other signaling pathways involved in prostate cancer.  相似文献   

2.
In this study we describe a novel Rho small GTPase dependent pathway that elicits apoptotic responses controlled by actin reorganization in hormone-sensitive LNCaP- and hormone insensitive DU145-prostate cancer cells stimulated with membrane androgen receptor selective agonists. Using an albumin-conjugated steroid, testosterone-BSA, we now show significant induction of actin polymerization and apoptosis that can be reversed by actin disrupting agents in both cell lines. Testosterone-BSA triggered RhoA/B and Cdc42 activation in DU145 cells followed by stimulation of downstream effectors ROCK, LIMK2 and ADF/destrin. Furthermore, dominant-negative RhoA, RhoB or Cdc42 mutants or pharmacological inhibitors of ROCK inhibited both actin organization and apoptosis in DU145 cells. Activation of RhoA/B and ROCK was also implicated in membrane androgen receptor-dependent actin polymerization and apoptosis in LNCaP cells. Our findings suggest that Rho small GTPases are major membrane androgen receptor effectors controlling actin reorganization and apoptosis in prostate cancer cells.  相似文献   

3.
The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH(2) terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 mug/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.  相似文献   

4.
Much evidence indicates that cAMP-dependent protein kinase (PKA) prevents increased endothelial permeability induced by inflammatory mediators. We investigated the hypothesis that PKA inhibits Rho GTPases, which are regulator proteins believed to mediate endothelial barrier dysfunction. Stimulation of human microvascular endothelial cells (HMEC) with thrombin (10 nM) increased activated RhoA (RhoA-GTP) within 1 min, which remained elevated approximately fourfold over control for 15 min. The activation was accompanied by RhoA translocation to the cell membrane. However, thrombin did not activate Cdc42 or Rac1 within similar time points, indicating selectivity of activation responses by Rho GTPases. Pretreatment of HMEC with 10 micro M forskolin plus 1 micro M IBMX (FI) to elevate intracellular cAMP levels inhibited both thrombin-induced RhoA activation and translocation responses. FI additionally inhibited thrombin-mediated dissociation of RhoA from guanine nucleotide dissociation inhibitor (GDI) and enhanced in vivo incorporation of (32)P by GDI. HMEC pretreated in parallel with FI showed >50% reduction in time for the thrombin-mediated resistance drop to return to near baseline and inhibition of approximately 23% of the extent of resistance drop. Infection of HMEC with replication-deficient adenovirus containing the protein kinase A inhibitor gene (PKA inhibitor) blocked both the FI-mediated protective effects on RhoA activation and resistance changes. In conclusion, the results provide evidence that PKA inhibited RhoA activation in endothelial cells, supporting a signaling mechanism of protection against vascular endothelial barrier dysfunction.  相似文献   

5.
Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G-protein-coupled protease-activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a "tethered ligand" mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase-mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin-mediated [Ca(2+)](i) flux, receptor cleavage, and elevation of rest [Ca(2+)](i) activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G-protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G-protein-specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G-proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin-induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating G(o)/G(i), were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc.  相似文献   

6.
《Cellular signalling》2014,26(9):1975-1984
Cytoskeletal reorganization is crucial for platelet adhesion and thrombus formation to avoid excessive bleeding. Major regulators of cytoskeletal dynamics are small GTPases of the Rho family. Rho GTPases become activated by G-protein coupled receptor activation, downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors and by outside-in signaling of integrins. They act as molecular switches and cycle between active and inactive states. GTPase activating proteins (GAPs) stimulate the hydrolysis of GTP to GDP to terminate Rho signaling. Nadrin is a RhoGAP that was recently identified in platelets. Five Nadrin isoforms are known consisting of a unique GAP and an N-terminal BAR domain responsible for the selective regulation of RhoA, Cdc42 and Rac1. Besides BAR domain mediated regulation of Nadrin GAP activity nothing is known about the regulation of Nadrin and the impact on cytoskeletal reorganization. Here we show that Nadrin becomes tyrosine phosphorylated upon platelet activation. We found Src family proteins (Src, Lyn, Fyn) to be responsible to control Nadrin GAP activity by phosphorylation. Interestingly, phosphorylation of Nadrin leads to tightly regulated Rho activation that was found to be Nadrin isoform- and (Rho) target-specific. Src-phosphorylation of Nadrin5 mediated inactivation of Cdc42 while RhoA and Rac1 became activated upon Src-mediated phosphorylation of Nadrin2. Our results suggest a critical role for spatial and temporal regulation of Nadrin and thus for the control of Rho GTPases in platelets.  相似文献   

7.
蛋白酶激活受体(protease-activated receptor,PAR)属于G蛋白偶联受体家族,包括4个成员,除PAR2为胰蛋白酶受体外,其他三个都是凝血酶受体,PAR通过形成或暴露新的N末端被激活。PAR广泛表达于全身各组织,尤其在消化系统表现出多种功能;通过促进细胞增殖、迁移、浸润、血管生成以及组织重构(通过促进细胞增殖、迁移、浸润和血管生成),同时抑制细胞的分化和凋亡等因素参与肿瘤的发生和发展,这为临床诊治和预后评判提供了有力的手段。  相似文献   

8.
Cytoskeletal reorganization of activated platelets plays a crucial role in hemostasis and thrombosis and implies activation of Rho GTPases. Rho GTPases are important regulators of cytoskeletal dynamics and function as molecular switches that cycle between an inactive and an active state. They are regulated by GTPase activating proteins (GAPs) that stimulate GTP hydrolysis to terminate Rho signaling. The regulation of Rho GTPases in platelets is not explored. A detailed characterization of Rho regulation is necessary to understand activation and inactivation of Rho GTPases critical for platelet activation and aggregation. Nadrin is a RhoGAP regulating cytoplasmic protein explored in the central nervous system. Five Nadrin isoforms are known that share a unique GAP domain, a serine/threonine/proline-rich domain, a SH3-binding motif and an N-terminal BAR domain but differ in their C-terminus. Here we identified Nadrin in platelets where it co-localizes to actin-rich regions and Rho GTPases. Different Nadrin isoforms selectively regulate Rho GTPases (RhoA, Cdc42 and Rac1) and cytoskeletal reorganization suggesting that – beside the GAP domain – the C-terminus of Nadrin determines Rho specificity and influences cell physiology. Furthermore, Nadrin controls RhoA-mediated stress fibre and focal adhesion formation. Spreading experiments on fibrinogen revealed strongly reduced cell adhesion upon Nadrin overexpression. Unexpectedly, the Nadrin BAR domain controls Nadrin-GAP activity and acts as a guidance domain to direct this GAP to its substrate at the plasma membrane. Our results suggest a critical role for Nadrin in the regulation of RhoA, Cdc42 and Rac1 in platelets and thus for platelet adhesion and aggregation.  相似文献   

9.
We have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In this study, we examined 1,074 prostate biopsies by tissue microarray analysis and demonstrated that PAR1 expression is significantly increased in prostate cancer compared to normal prostate epithelial cells and benign prostatic hyperplasia. We hypothesized that PAR1 activation contributed to prostate cancer cell progression. We demonstrated that stimulation of PAR1 by thrombin or thrombin receptor activating peptide (TRAP6), in androgen-independent DU145 and PC-3 cells resulted in increased DNA binding activity of the NFkappaB p65 subunit. IL-6 and IL-8 levels were also elevated in conditioned media by at least two-fold within 4-6 h of PAR1 activation. This induction of cytokine production was abrogated by pretreatment of cells with the NFkappaB inhibitor caffeic acid phorbol ester. The p38 and ERK1/2 MAPK signaling cascades were also activated by PAR1 stimulation, whereas the SAPK/JNK pathway was unaffected. Inhibition of p38 and ERK1/2 by SB-203589 and PD-098059, respectively, did not abrogate NFkappaB activity, suggesting an independent induction of NFkappaB by PAR1 stimulation. Furthermore, TUNEL assay showed that activation of PAR1 attenuated docetaxel induced apoptosis through the upregulation of the Bcl-2 family protein Bcl-xL. Akt activation was not observed, suggesting that drug resistance induced by PAR1 was independent of PI3K signaling pathway. Because thrombin and PAR1 are over-expressed in prostate cancer patients, targeting the inhibition of their interaction may attenuate NFkappaB signaling transduction resulting in decreased drug resistance and subsequent survival of prostate cancer cells.  相似文献   

10.
Proteases, like thrombin, trypsin, cathepsins, or tryptase, can signal to cells by cleaving in a specific manner, a family of G protein-coupled receptors, the protease-activated receptors (PARs). Proteases cleave the extracellular N-terminal domain of PARs to reveal tethered ligand domains that bind to and activate the receptors. Recent evidence has supported the involvement of PARs in inflammation and pain. Activation of PAR(1), PAR(2), and PAR(4) either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Recent studies suggest a crucial role for the different PARs in innate immune response. The role of PARs in the activation of pain pathways appears to be dual. Subinflammatory doses of PAR(2) agonists induce hyperalgesia and allodynia, and PAR(2) activation has been implicated in the generation of inflammatory hyperalgesia. In contrast, subinflammatory doses of PAR(1) or PAR(4) increase nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as analgesic mediators. PARs have to be considered as an additional subclass of G protein-coupled receptors that are active participants to inflammation and pain responses and that could constitute potential novel therapeutic targets.  相似文献   

11.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

12.
We examined expression of protease-activated receptors 2 (PAR2) and characterized their signaling pathways in rabbit gastric muscle cells. The PAR2 activating peptide SLIGRL (PAR2-AP) stimulated Gq, G13, Gi1, PI hydrolysis, and Rho kinase activity, and inhibited cAMP formation. Stimulation of PI hydrolysis was partly inhibited in cells expressing PAR2 siRNA, Gaq or Gai minigene and in cells treated with pertussis toxin, and augmented by expression of dominant negative regulator of G protein signaling (RGS4(N88S)). Stimulation of Rho kinase activity was abolished by PAR-2 or Ga13 siRNA, and by Ga13 minigene. PAR2-AP induced a biphasic contraction; initial contraction was selectively blocked by the inhibitor of PI hydrolysis (U73122) or MLC kinase (ML-9), whereas sustained contraction was selectively blocked by the Rho kinase inhibitor (Y27632). PAR2-AP induced phosphorylation of MLC20, MYPT1 but not CPI-17. PAR2-AP also caused a decrease in the association of NF-kB and PKA catalytic subunit: the effect of PAR2-AP was blocked by PAR2 siRNA or phosphorylation-deficient RhoA (RhoA(S188A)). PAR2-AP-induced degradation of IkBa and activation of NF-kB were abolished by the blockade of RhoA activity by Clostridium botulinum C3 exoenzyme suggesting RhoA-dependent activation of NF-kB. PAR2-AP-stimulated Rho kinase activity was significantly augmented by the inhibitors of PKA (myristoylated PKI), IKK2 (IKKIV) or NF-kB (MG132), and in cells expressing dominant negative mutants of IKK (IKK(K44A), IkBa (IkBa (S32A/S36A)) or RhoA(S188A), suggesting feedback inhibition of Rho kinase activity via PKA derived from NF-kB pathway. PAR2-AP induced phosphorylation of RhoA and the phosphorylation was attenuated in cells expressing phosphorylation-deficient RhoA(S188A). Our results identified signaling pathways activated by PAR2 to mediate smooth muscle contraction and a novel pathway for feedback inhibition of PAR2-stimulated RhoA. The pathway involves activation of the NF-kB to release catalytic subunit of PKA from its binding to IkBa and phosphorylation of RhoA at Ser188.  相似文献   

13.
Trypsin IV, a novel agonist of protease-activated receptors 2 and 4   总被引:11,自引:0,他引:11  
Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.  相似文献   

14.
15.
In the central nervous system, thrombin-mediated activation of protease-activated receptors (PARs) results in neuroinflammation and increased vascular permeability. These events have been linked to cancer and neurodegeneration. Endothelial cells (ECs) isolated from sporadic cerebral cavernous malformation (CCM) specimens showed dysregulation of genes involved in “thrombin-mediated PAR-1 activation” signaling. CCM is a vascular disease involving brain capillaries. In CCM, ECs show defective cell junctions. Oxidative stress and neuroinflammation play a key role in disease onset and progression. In order to confirm the possible role of thrombin pathway in sporadic CCM pathogenesis, we evaluated PARs expression in CCM-ECs. We found that sporadic CCM-ECs overexpress PAR1, PAR3 and PAR4, together with other coagulation factor encoding genes. Moreover, we investigated about expression of the three familial CCM genes (KRIT1, CCM2 and PDCD10) in human cerebral microvascular ECs, following thrombin exposure, as well as protein level. Thrombin exposure affects EC viability and results in dysregulation of CCM gene expression and, then, in decreased protein level. Our results confirm amplification of PAR pathway in CCM suggesting, for the first time, the possible role of PAR1-mediated thrombin signaling in sporadic CCM. Thrombin-mediated PARs over activation results in increased blood-brain barrier permeability due to loss of cell junction integrity and, in this context, also the three familial CCM genes may be involved.  相似文献   

16.
This paper describes the development of galactosidase protease-activated receptor (GPAR) as a recombinant protein obtained by fusion of beta-galactosidase, the extracellular domains of protease-activated receptors (PARs), and a biotin acceptor domain. Used as an immobilized substrate, this protein allows the detection of thrombin in the sub-picomolar range. A comparative analysis for proteolytic cleavage of murine PAR1, PAR2, and PAR3 and human PAR4 was performed, involving mutated and nonmutated GPAR fusion proteins. Thrombin cleaved GPAR1 (2.6 mol(beta-galactosidase)/(mol(thrombin) * min)), GPAR3 (410 mmol(beta-galactosidase)/(mol(thrombin) * min)), and GPAR4 (4.3 mmol(beta-galactosidase)/(mol(thrombin) * min)) specifically at the proteolytic activation site. A second possible cleavage site for thrombin is present in murine PAR1 and PAR3. Trypsin and plasmin cleaved all receptor fusion proteins with little specificity for the activation site, except for a marked preference of trypsin for cleavage at the activation site of GPAR2. Chymotrypsin cleaves GPAR1 at a rate (58 mmol(beta-galactosidase)/(mol(thrombin) * min)) that suggests the possibility of chymotryptic inactivation of PAR1. Elastase may inactivate PAR1 and PAR3, but probably not PAR2 and PAR4. Neither activated protein C nor the plasminogen activators cleave any GPAR fusion protein at considerable rates.  相似文献   

17.
The effects of the pleiotropic serine protease thrombin on tumor cells are commonly thought to be mediated by the thrombin receptor protease-activated receptor 1 (PAR1). We demonstrate here that PAR1 activation has a role in experimental metastasis using the anti-PAR1 antibodies ATAP2 and WEDE15, which block PAR1 cleavage and activation. Thrombin also stimulates chemokinesis of human melanoma cells toward fibroblast conditioned media and soluble matrix proteins. Thrombin-enhanced migration is abolished by anti-PAR1 antibodies, demonstrating that PAR1 cleavage and activation are required. The PAR1-specific agonist peptide TFLLRNPNDK, however, does not stimulate migration, indicating that PAR1 activation is not sufficient. In contrast, a combination of TFLLRNPNDK and the PAR2 agonist peptide SLIGRL mimics the thrombin effect on migration, whereas PAR2 agonist alone has no effect. Agonist peptides for the thrombin receptors PAR3 and PAR4 used alone or with PAR1 agonist also have no effect. Similarly, activation of PAR1 and PAR2 also enhances chemokinesis of prostate cancer cells. Desensitization with PAR2 agonist abolishes thrombin-enhanced cell motility, demonstrating that thrombin acts through PAR2. PAR2 is cleaved by proteases with trypsin-like specificity but not by thrombin. Thrombin enhances migration in the presence of a cleavage-blocking anti-PAR2 antibody, suggesting that thrombin activates PAR2 indirectly and independent of receptor cleavage. Treatment of melanoma cells with trypsin or PAR2 agonist peptide enhances experimental metastasis. Together, these data confirm a role for PAR1 in migration and metastasis and demonstrate an unexpected role for PAR2 in thrombin-dependent tumor cell migration and in metastasis.  相似文献   

18.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

19.
Protease-activated receptors (PARs) are a family of G protein-coupled receptors that are activated by serine protease-mediated proteolytic cleavage of their extracellular domain. We have previously characterized the expression and function of PARs in human monocytes and macrophages, yet information about PARs in dendritic cells (DC) is scarce. Monocyte-derived immature DC do not express PARs. Upon maturation with LPS, but not with TNF-alpha or CD40 ligand, DC express PAR1 and PAR3, but not PAR2 or PAR4. Stimulation of DC with the serine protease thrombin or PAR1-activating peptide elicits actin polymerization and concentration-dependent chemotactic responses in LPS-, but not in TNF-alpha-matured DC. The thrombin-induced migration is a true chemotaxis with only negligible chemokinesis. Stimulation of PARs with thrombin or the respective receptor-activating peptides activates ERK1/2 and Rho kinase as well as subsequent phosphorylation of the regulatory myosin L chain 2. The ERK1/2- and Rho kinase 1-mediated phosphorylation of myosin L chain 2 was indispensable for the PAR-mediated chemotaxis as shown by pharmacological inhibitors. Additionally, thrombin stimulated the Rho-dependent release of the CC chemokine CCL18/pulmonary and activation-regulated chemokine, which induces chemotaxis of lymphocytes and immature DC as well as fibroblast proliferation. The colocalization of CD83(+) DC with CCL18 in human atherosclerotic plaques revealed by immunofluorescence microscopy combined with the presence of functionally active thrombin receptors on mature DC point to a previously unrecognized functional role of thrombin in DC biology. The thrombin-induced stimulation of mature DC may be of particular relevance in atherosclerotic lesions, which harbor all components of this novel mechanism.  相似文献   

20.
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-Delta3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号