首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Objective: Prostaglandin (PG)E2 is a lipid mediator implicated in inflammatory diseases and in the regulation of lipolysis and adipocyte differentiation. This work was, thus, undertaken to study the regulation of the various PGE2 synthases (PGESs) in obesity. Research Methods and Procedures: C57Bl/6 mice were subjected to a high‐fat or regular diet for 12 weeks. The levels of PGE2 in white adipose tissue (WAT) of lean and obese mice were quantified by liquid chromatography‐mass spectrometry, and the change in expression of the three major PGES caused by diet‐induced obesity was characterized by Western blotting. Human preadipocytes and 3T3‐L1 cells were used to assess the expression of microsomal prostaglandin E2 synthase‐1 (mPGES‐1) during adipogenesis. Results: mPGES‐1, mPGES‐2, and cytosolic PGES proteins were all detected in WAT of lean animals. mPGES‐1 was expressed at higher levels in WAT than in any other tissues examined and was more abundant (3‐ to 4‐fold) in epididymal (visceral) compared with inguinal (subcutaneous) WAT. Expression of mPGES‐1 was also detected in undifferentiated and differentiated 3T3‐L1 cells and in human primary subcutaneous preadipocytes at all stages of adipogenesis. The mPGES‐1 protein was substantially down‐regulated in epididymal and inguinal WAT of obese mice, whereas mPGES‐2 and cytosolic PGES remained relatively stable. Concordantly, the PGE2 levels in obese inguinal WAT were significantly lower than those of lean animals. Discussion: These data suggest that mPGES‐1 is the major form of PGESs contributing to the synthesis of PGE2 in WAT and that its down‐regulation might be involved in the alterations of lipolysis and adipogenesis associated with obesity.  相似文献   

4.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

5.
Pref-1 is a highly glycosylated Delta-like transmembrane protein containing six epidermal growth factor-like repeats in the extracellular domain. Pref-1 is abundantly expressed in preadipocytes, but expression is down-regulated during adipocyte differentiation. Forced expression of Pref-1 in 3T3-L1 cells was reported to inhibit adipocyte differentiation. Here we show that efficient and regulated processing of Pref-1 occurs in 3T3-L1 preadipocytes releasing most of the extracellular domain as a 50-kDa heterogeneous protein, previously isolated and characterized as FA1. Unexpectedly, we found that forced expression of the soluble form, FA1, or full-length Pref-1 did not inhibit adipocyte differentiation of 3T3-L1 cells when differentiation was induced by standard treatment with methylisobutylxanthine, dexamethasone, and high concentrations of insulin. However, forced expression of either form of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44 mitogen-activated protein kinases (MAPKs) is compromised in preadipocytes with forced expression of Pref-1. This is accompanied by suppression of clonal expansion and terminal differentiation. Accordingly, supplementation with insulin or IGF-1 rescued p42/p44 MAPK activation, clonal expansion, and adipocyte differentiation in a dose-dependent manner.  相似文献   

6.
Objective: The study of human preadipocytes is hampered by the limited availability of adipose tissue and low yield of cell preparation. Proliferation of preadipocytes using common protocols, including fetal bovine serum (FBS), results in a markedly reduced differentiation capacity. Therefore, we were interested in developing an improved culture system that allows the proliferation of human preadipocytes without loss of differentiation capacity. Research Methods and Procedures: Adipose tissue samples were taken from subjects undergoing elective abdominal surgery. Cells were seeded at various densities and cultured using different formulations of proliferation media including factors such as fibroblast growth factor‐2 (basic fibroblast growth factor), epidermal growth factor, insulin, and FBS either alone or in combination. Cells were counted and induced to differentiate after confluence. After complete differentiation, cells were harvested, and glycerol‐3‐phosphate dehydrogenase activity was measured. Cells were subcultured for up to five passages. Results: The proliferation medium with 4 growth factors (PM4), consisting of 2.5% FBS, 10 ng/mL epidermal growth factor, 1 ng/mL basic fibroblast growth factor, and 8.7 µM insulin, resulted in lower doubling times at all seeding densities tested (0.05 × 104 to 1.5 × 104) compared with medium supplemented with 10% FBS. In contrast to cells in FBS medium, cells grown with PM4 medium retained full differentiation rate (glycerol‐3‐phosphate dehydrogenase activity, 493 ± 215 vs. 41 ± 17 mU/mg, p < 0.01). Differentiation capacity was fully retained at least for up to three passages in PM4 medium. Discussion: The use of PM4 medium results in substantial proliferation of human preadipocytes with preserved differentiation capacity. This novel technique represents a valuable tool for the study of human adipose tissue development and function starting from small samples.  相似文献   

7.
The estrogen sulfotransferase (EST) is a phase II drug-metabolizing enzyme known to catalyze the sulfoconjugation of estrogens. EST is highly expressed in the white adipose tissue of male mice, but the role of EST in the development and function of adipocytes remains largely unknown. In this report, we showed that EST played an important role in adipocyte differentiation. EST was highly expressed in 3T3-L1 preadipocytes and primary mouse preadipocytes. The expression of EST was dramatically reduced in differentiated 3T3-L1 cells and mature primary adipocytes. Overexpression of EST in 3T3-L1 cells prevented adipocyte differentiation. In contrast, preadipocytes isolated from EST knockout (EST-/-) mice exhibited enhanced differentiation. The inhibitory effect of EST on adipogenesis likely resulted from the sustained activation of ERK1/2 MAPK and inhibition of insulin signaling, leading to a failure of switch from clonal expansion to differentiation. The enzymatic activity of EST was required for the inhibitory effect of EST on adipogenesis, because an enzyme-dead EST mutant failed to inhibit adipocyte differentiation. In vivo, overexpression of EST in the adipose tissue of female transgenic mice resulted in smaller adipocyte size. Taken together, our results suggest that EST functions as a negative regulator of adipogenesis.  相似文献   

8.
9.
In the early phase of adipocyte differentiation, transient increase of DNA synthesis, called clonal expansion, and transient hyperphosphorylation of retinoblastoma protein (Rb) are observed. We investigated the role of these phenomena in insulin-induced adipocyte differentiation of 3T3-L1 cells. Insulin-induced clonal expansion, Rb phosphorylation and adipocyte differentiation were all inhibited by the PI 3-kinase inhibitors and rapamycin, but not the MEK inhibitor, whereas the MEK inhibitor, but not PI 3-kinase inhibitors or rapamycin, decreased c-fos induction. We conclude that insulin induces hyperphosphorylation of Rb via PI 3-kinase and mTOR dependent pathway, which promotes clonal expansion and adipocyte differentiation of 3T3-L1 cells.  相似文献   

10.
Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis   总被引:6,自引:0,他引:6  
Flavonoids, polyphenolic compounds that exist widelyin plants, inhibit cell proliferation and increase cell differentiation in many cancerous and noncancerous cell lines. Because terminal differentiation of preadipocytes to adipocytes depends on proliferation of both pre- and postconfluent preadipocytes, we predicted that flavonoids would inhibit adipogenesis in the 3T3-L1 preadipocyte cellline. The flavonoids genistein and naringenin inhibited proliferation of preconfluent preadipocytes in a time- and dose-dependent manner. When added to 2-day postconfluent preadipocytes at the induction ofdifferentiation, genistein inhibited mitotic clonal expansion, triglyceride accumulation, and peroxisome proliferator-activated receptor- expression, but naringenin had no effect. Theantiadipogenic effect of genistein was not due to inhibition of insulinreceptor subtrate-1 tyrosine phosphorylation. When added 3 days afterinduction of differentiation, neither flavonoid inhibiteddifferentiation. In fully differentiated adipocytes, genisteinincreased basal and epinephrine-induced lipolysis, but naringenin hadno significant effects. These data demonstrate that genistein andnaringenin, despite structural similarity, have differential effects onadipogenesis and adipocyte lipid metabolism.

  相似文献   

11.
Little is known about the role of p38MAPK in human adipocyte differentiation. Here we showed that p38MAPK activity increases during human preadipocytes differentiation. Pharmacological inhibition of p38MAPK during adipocyte differentiation of primary human preadipocytes markedly reduced triglycerides accumulation and adipocyte markers expression. Cell cycle arrest or proliferation was not affected by p38MAPK inhibition. Although induction of C/EBPbeta was not altered by the p38MAPK inhibitor, its phosphorylation on Threonine(188) was decreased as well as PPARgamma expression. These results indicate that p38MAPK plays a positive role in human adipogenesis through regulation of C/EBPbeta and PPARgamma factors.  相似文献   

12.
Within the first 24 h of hormonally stimulated adipocyte differentiation, murine 3T3-L1 preadipocytes undergo a mitotic expansion phase prior to terminal differentiation. During this time, the cell cycle regulatory proteins, p130 and p107 undergo dramatic differential expression and the transient increase in expression of p107 appears to be required for terminal differentiation. Recently, human adipose-derived human stem cells (hASC) of mesenchymal origin have been used as a model of human adipocyte differentiation and we sought to determine if differentiating hASC undergo clonal expansion and if the regulated expression of p130/p107 was similar to that observed during 3T3-L1 adipogenesis. Results indicate that differentiating hASC, unlike 3T3-L1 cells do not undergo clonal expansion and p130 expression gradually diminishes across differentiation. However, p107 expression is transiently increased during hASC differentiation in a manner analogous to 3T3-L1 cells suggesting a similar role for p107 in terminal differentiation in human adipocytes.  相似文献   

13.
14.
15.
Development of established preadipocyte cell lines, such as 3T3‐L1 and 3T3‐F442A, greatly facilitated the study of molecular mechanisms of adipocyte differentiation under defined conditions. Most of these cell lines are derived from mouse embryos, and preadipocyte cell lines of other species have not yet been maintained in culture long enough to study differentiation under a variety of conditions. This is the first report on the establishment of porcine preadipocyte cell lines derived from mature adipocytes by a simple method, known as ceiling culture, for culturing mature adipocytes in vitro. This cell line can proliferate extensively until the cells become confluent and fully differentiated into mature adipocytes, depending on adipogenic induction. No changes in their differentiation pattern are observed during their propagation, and they have been successfully carried and differentiated for at least 37 passages. This cell line maintains a normal phenotype without transforming spontaneously, even after long‐term maintenance in culture. This achievement may lead to easy establishment of porcine preadipocyte cell lines and novel model systems for studying the mechanisms of adipocyte differentiation and metabolism as a substitute for human preadipocytes. J. Cell. Biochem. 109: 542–552, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
In this study multipotent adipose-derived stem cells isolated from human adipose tissue (hMADS cells) were shown to differentiate into adipose cells in serum-free, chemically defined medium. During the differentiation process, hMADS cells exhibited a gene expression pattern similar to that described for rodent clonal preadipocytes and human primary preadipocytes. Differentiated cells displayed the key features of human adipocytes, i.e., expression of specific molecular markers, lipolytic response to agonists of beta-adrenoreceptors (beta2-AR agonist > beta1-AR agonist > beta3-AR agonist) and to the atrial natriuretic peptide, insulin-stimulated glucose transport, and secretion of leptin and adiponectin. hMADS cells were able to respond to drugs as inhibition of adipocyte differentiation was observed in the presence of prostaglandin F2alpha, tumour necrosis factor-alpha, and nordihydroguaiaretic acid, a natural polyhydroxyphenolic antioxidant. Thus, for the first time, human adipose cells with normal karyotype and indefinite life span have been established. They represent a novel and valuable tool for studies of fat tissue development and metabolism.  相似文献   

18.
Evidence is presented that calpain, a calcium-activated protease, degrades the cyclin-dependent kinase inhibitor, p27, during the mitotic clonal expansion phase of 3T3-L1 preadipocyte differentiation. Calpain activity is required during an early stage of the adipocyte differentiation program. Thus, inhibition of calpain with N-acetyl-Leu-Leu-norleucinal (ALLN) blocks clonal expansion and acquisition of the adipocyte phenotype only when added between 12 and 24 h after the induction of differentiation. Likewise, inhibition of calpain by overexpression of calpastatin, the specific endogenous inhibitor of calpain, prevents 2-day post-confluent preadipocytes from reentering the cell cycle triggered by the differentiation inducers. Inhibition of calpain with ALLN causes preadipocytes to arrest just prior to S phase and prevents phosphorylation of the retinoblastoma gene product, DNA replication, clonal expansion, and subsequent adipocyte differentiation but does not affect the expression of immediate early genes (i.e. fos, jun, C/EBPbeta, and C/EBPdelta). Inhibition of calpain by either ALLN or by overexpression of calpastatin blocks the degradation of p27. p27 is degraded in vitro by cell-free extracts from clonally expanding preadipocytes that contain "active" calpain but not by extracts from pre-mitotic preadipocytes that do not. This action is inhibited by calpastatin or ALLN. Likewise, p27 in preadipocyte extracts is a substrate for purified calpain; this proteolytic action was inhibited by heat inactivation, EGTA, or ALLN. Thus, extracellular signals from the differentiation inducers appear to activate calpain, which degrades p27 allowing density-dependent inhibited preadipocytes to reenter the cell cycle and undergo mitotic clonal expansion.  相似文献   

19.
Upon differentiation induction of 3T3-L1 preadipocytes by a hormone mixture containing 1-isobutyl-3-methylxanthine, dexamethasone, and insulin, the preadipocytes undergo approximately 2 rounds of mitotic clonal expansion, which just precedes the adipogenic gene expression program and has been thought to be an essential early step for differentiation initiation. By inducing 3T3-L1 preadipocytes with each individual hormone, it was determined that the mitotic clonal expansion was induced only by insulin and not by 1-isobutyl-3-methylxanthine or dexamethasone. Cell number counting and fluorescence-activated cell-sorting analysis indicated that a significant fraction of 3T3-L1 preadipocytes differentiated into adipocytes without mitotic clonal expansion when induced with the combination of 1-isobutyl-3-methylxanthine and dexamethasone. Furthermore, when normally induced 3T3-L1 preadipocytes were treated with PD98059 (an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1) to block the activation of extracellular signal-regulated kinase (Erk) 1 and Erk2, the mitotic clonal expansion was blocked, but adipocyte differentiation was not affected. These observations were confirmed by bromodeoxyuridine labeling. The differentiated adipocytes induced with 1-isobutyl-3-methylxanthine and dexamethasone or standard hormone mixture plus PD98059 were not labeled by bromodeoxyuridine. Thus, it is evident that 3T3-L1 preadipocytes could differentiate into adipocytes without DNA synthesis and mitotic clonal expansion. Our results also suggested that activation of Erk1 and Erk2 is essential to but not sufficient for induction of mitotic clonal expansion.  相似文献   

20.
Rehmannia glutinosa, a Traditional Chinese Medicine (TCM), has been used to increase physical strength. Here, we report that Rehmannia glutinosa extract (RE) inhibits adipocyte differentiation and adipogenesis. RE impairs differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. At the molecular level, treatment with RE inhibits expression of the key adipocyte differentiation regulator C/EBPβ, as well as C/EBPα and the terminal marker protein 422/aP2, during differentiation of preadipocytes into adipocytes. Additionally, RE inhibits the mitotic clonal expansion (MCE) process of adipocyte differentiation, and RE prevents localization of C/EBPβ to the centromeres. RE also prevents high fat diet (HFD) induced weight gain and adiposity in rats. Taken together, our results indicate that Rehmannia glutinosa extract inhibits preadipocyte differentiation and adipogenesis in cultured cells and in rodent models of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号