首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters.  相似文献   

2.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

3.
Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency‐dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = –0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand‐pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species.  相似文献   

4.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

5.
为了研究植物生长季内开花时间对花特征表型选择的影响,我们以青藏高原东缘高寒草地的毛茛状金莲花Trollius ranunculoides)为实验材料,在生长季内不同开花时间(花前期、花末期)测定花特征,观察访花昆虫的类群和访花频率,生长季结束后收集种子.根据昆虫访花的喜好和季节内类群与访花频率的变化,分析了不同开花时间毛茛状金莲花的花特征与昆虫的选择;并用种子产量表示雌性适合度,估计了毛茛状金莲花的花特征在不同开花时间所受的表型选择.结果表明:不同花期植物的花特征有显著差异,相应的访花昆虫的类群和频率也存在差异,不同类群昆虫访花喜好也不一样.蜂喜好花瓣和花萼较宽、花茎短和花茎数少的个体,这正符合花前期的特征,因而蜂的访花频率在花前期较高;蝇对花特征没有明显的偏好.而通过雌性适合度估计毛茛状金莲花花特征所受的表型选择则是:花前期,花茎较长和花茎数多的植株适合度大;花末期,花茎数多的植株适合度大.我们的研究表明:在植物生长季,花期的分化伴随着传粉昆虫活动的变化.不同花期,访花昆虫的变化可能对植物花特征的分化起了至关重要的作用.但是访花昆虫对花特征的选择与通过雌性适合度估计植物受到的选择不尽相同,这可能是由于其他因素造成的.  相似文献   

6.
Flower size and number usually evolve under pollinator‐mediated selection. However, hot, dry environments can also modulate display, counteracting pollinator attraction. Increased pollen deposition on larger flower displays may not involve higher female fitness. Consequently, stressful conditions may constrain flower size, favouring smaller‐sized flowers. The large‐flowered, self‐incompatible Mediterranean shrub Cistus ladanifer was used to test that: (1) this species suffers pollen limitation; (2) pollinators are spatially–temporally variable and differentially visit plants with more/larger flowers; (3) increased visits enhance reproduction under pollen limitation; (4) stressful conditions reduce female fitness of larger displays; and (5) phenotypic selection on floral display is not just pollinator‐mediated. We evaluated pollen limitation, related floral display to pollinator visits and fruit and seed production and estimated phenotypic selection. Flower size was 7.2–10.5 cm and varied spatially–temporally. Visitation rates (total visits/50 min) ranged from 0.26 to 0.43 and increased with flower size. Fruit set averaged 80% and seed number averaged 855, but only fruit set varied between populations and years. Selection towards larger flowers was detected under conditions of pollen limitation. Otherwise, we detected stabilizing selection on flower size and negative selection on flower number. Our results suggest that selection on floral display is not only pollinator‐dependent through female fitness in C. ladanifer. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 540–555.  相似文献   

7.
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator‐mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.  相似文献   

8.
The evolution of floral traits is often attributed to pollinator‐mediated selection; however, the importance of pollinators as selective agents in arctic environments is poorly resolved. In arctic and subarctic regions that are thought to be pollen limited, selection is expected to either favor floral traits that increase pollinator attraction or promote reproductive assurance through selfing. We quantified phenotypic selection on floral traits in two arctic and two subarctic populations of the self‐compatible, but largely pollinator‐dependent, Parrya nudicaulis. Additionally, we measured selection in plants in both open pollination and pollen augmentation treatments to estimate selection imposed by pollinators in one population. Seed production was found to be limited by pollen availability and strong directional selection on flower number was observed. We did not detect consistently greater magnitudes of selection on floral traits in the arctic relative to the subarctic populations. Directional selection for more pigmented flowers in one arctic population was observed, however. In some populations, selection on flower color was found to interact with other traits. We did not detect consistently stronger selection gradients across all traits for plants exposed to pollinator selection relative to those in the pollen augmentation treatment; however, directional selection tended to be higher for some floral traits in open‐pollinated plants.  相似文献   

9.
  • The coevolution of insect pollinators and their host plants is a typical example of natural selection; however, how insect pollinators avoid overdependence on one peculiar plant remains unclear. As most insect pollinators exhibit a diet breadth when showing flower constancy, determining the difference and similarity of most and less preferred flowers by insect pollinators may be helpful to understand their trade-off between flower constancy and overdependence.
  • This was addressed using the long-proboscid tangle-veined fly (Nemetrinus spp.). Dietary investigation indicates that the flies show constancy for the morphological characteristic of the Delphinium caeruleum, which is the most preferred plant for this Nemestrinidae fly that has blue, long-tubed flowers.
  • In a colour selection experiment, focal individuals showed obvious preference for white, which is the colour of less preferred flowers by the fly in the natural environment. In a scent selection experiment, focal individuals showed obvious preference for D. caeruleum and Dracocephalum heterophyllum but avoidance to Dasiphora fruticosa and Dasiphora davurica. This indicates that long-proboscid tangle-veined flies can forage on other flowers, despite the existing constancy for D. caeruleum, as long as they do not hate the scent. It seems that long-proboscid tangle-veined flies can maximise foraging efficiency by showing constancy for the morphological characteristic of the most preferred plant and for the scent and colour of less-preferred plants.
  • The trade-off of long-proboscid tangle-veined flies in the selection of nectar sources may be an adaptation to the risk of overdependence on one plant in evolution.
  相似文献   

10.

Premise

Floral traits are frequently under pollinator-mediated selection, especially in taxa subject to strong pollen-limitation, such as those reliant on pollinators. However, antagonists can be agents of selection on floral traits as well. The causes of selection acting on spring ephemerals are understudied though these species can experience particularly strong pollen-limitation. I examined pollinator- and antagonist-mediated selection in a narrowly endemic spring ephemeral, Trillium discolor.

Methods

I measured pollen limitation in T. discolor across two years and evaluated its breeding system. I compared selection on floral traits (display height, petal size, petal color, flowering time) between open-pollinated, and pollen-supplemented plants to measure the strength and mode of pollinator-mediated selection. I assessed whether natural levels of antagonism impacted selection on floral traits.

Results

Trillium discolor was self-incompatible and experienced pollen limitation in both years of the study. Pollinators exerted negative disruptive selection on display height and petals size. In one year, pollinator-mediated selection favored lighter petals but in the second year pollinators favored darker petals. Antagonist damage did not alter selection on floral traits.

Conclusions

Results demonstrate that pollinators mediate the strength and mode of selection on floral traits in T. discolor. Interannual variation in the strength, mode, and direction of pollinator-mediated selection on floral traits could be important for maintaining of floral diversity in this system. Observed levels of antagonism were weak agents of selection on floral traits.  相似文献   

11.
Darwin recognized that biological diversity has accumulated as a result of both adaptive and nonadaptive processes. Very few studies, however, have addressed explicitly the contribution of nonadaptive processes to evolutionary diversification, and no general procedures have been established for distinguishing between adaptive and nonadaptive processes as sources of trait diversity. I use the diversification of flower colour as a model system for attempting to identify adaptive and nonadaptive causes of trait diversification. It is widely accepted that variation in flower colour reflects direct, adaptive response to divergent selective pressures generated by different pollinators. However, diversification of flower colour may also result from the effects of nonadaptive, pleiotropic relationships with vegetative traits. Floral pigments that have pleiotropic relationships to vegetative pigments may evolve and diversify in at least two nonadaptive ways. (1) Indirect response to selection on the pleiotropically related nonfloral traits may occur (indirect selection). (2) Divergent evolution in response to parallel selective pressures (e.g. selection by pollinators for visually obvious flowers) may occur because populations are at different genetic starting points, and each population follows its own genetic `line of least resistance.' A survey of literature suggests that pleiotropic relationships between flower colour and vegetative traits are common. Phylogenetically informed analyses of comparative data from Dalechampia (Euphorbiaceae) and Acer (Aceraceae), based on trait‐transition probabilities and maximum likelihood, indicated that floral and vegetative pigments are probably pleiotropically related in these genera, and this relationship better explains the diversification of floral colour than does direct selection by pollinators. In Dalechampia pink/purple floral bract colour may have originated by indirect response to selection on stem and leaf pigments. In Acer selection by pollinators for visually obvious flowers may to have led to the evolution of red or purple flowers in lineages synthesizing and deploying red anthocyanins in leaves, and pale‐green or yellow flowers in species not deploying red anthocyanins in vegetative structures. This study illustrates the broader potential of indirect selection and parallel selection on different genetic starting points to contribute to biological diversity, and the value of testing directly for the operation of these nonadaptive diversifying processes.  相似文献   

12.
Flower color is often viewed as a trait that signals rewards to pollinators, such that the relationship between flower color and plant fitness might result from its association with another trait. We used experimental manipulations of flower color and nectar reward to dissociate the natural character correlations present in a hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. Isozyme markers were used to follow the male and female reproductive success of these engineered phenotypes. One field experiment compared fitnesses of I. aggregata plants that varied only in flower color. Plants with flowers painted red received more hummingbird visits and sired more seeds than did plants with flowers painted pink or white to match those of hybrids and I. tenuituba. Our second field experiment compared fitnesses of I. aggregata, I. tenuituba, and hybrid plants in an unmanipulated array and in a second array where all flowers were painted red. In the unmanipulated array, I. aggregata received more hummingbird visits, set more seeds per flower, and sired more seeds per flower. These fitness differences largely disappeared when the color differences were eliminated. The higher male fitness of I. aggregata was due to its very high success at siring seeds on conspecific recipients. On both I. tenuituba and hybrid recipients, hybrid plants sired the most seeds, despite showing lower pollen fertility than I. aggregata in mixed donor pollinations in the greenhouse. Ipomopsis tenuituba had a fitness of only 13% relative to I. aggregata when traits varied naturally, compared to a fitness of 36% for white relative to red flowers when other traits were held constant.  相似文献   

13.
Most studies on pollinator‐mediated selection have been performed in generalized rather than specialized pollination systems. This situation has impeded evaluation of the extent to which selection acts on attraction or specialized key floral traits involved in the plant‐pollinator phenotypic interphase. We studied pollinator‐mediated selection in four populations of Nierembergia linariifolia, a self‐incompatible and oil‐secreting plant pollinated exclusively by oil‐collecting bees. We evaluated whether floral traits experience variable selection among populations and whether attraction and fit traits are heterogeneously selected across populations. Populations differed in every flower trait and selection was consistently observed for corolla size and flower shape, two traits involved in the first steps of the pollination process. However, we found no selection acting on mechanical‐fit traits. The observation that selection occurred upon attraction rather than mechanical‐fit traits, suggests that plants are not currently evolving fine‐tuned morphological adaptations to local pollinators and that phenotypic matching is not necessarily an expected outcome in this specialized pollination system.  相似文献   

14.
Although conflicting selection from different resources is thought to play a critical role in the evolution of specialized species, the prevalence of conflicting selection in generalists is poorly understood. Plants may experience conflicting selection on floral traits by different pollinators and between genders. Using artificial selection to increase phenotypic variation, we tested for conflicting and nonadditive selection on wild radish (Raphanus raphanistrum) flowers. To do this, we measured selection by each of the major pollinator taxa through both male and female fitness, and tested for a single-generation response to selection by a subset of these pollinators. We found some evidence for conflicting selection on anther exertion--sweat bees exerted stabilizing selection and larger bees selected for increased exertion. Stamen dimorphism was only under selection by honey bees, causing a response to selection in the next generation, and flower size was under similar selection by multiple pollinators. Selection differed significantly between genders for two traits, but there was no evidence for stronger selection through male fitness or for conflicting selection between genders. Our results suggest wild radish flowers can adapt to multiple pollinators, as we found little evidence for conflicting selection and no evidence for nonadditive selection among pollinators.  相似文献   

15.
Kilkenny FF  Galloway LF 《Oecologia》2008,155(2):247-255
Plant populations often exist in spatially heterogeneous environments. Light level can directly affect plant reproductive success through resource availability or by altering pollinator behavior. It can also indirectly influence reproductive success by determining floral display size which may in turn influence pollinator attraction. We evaluated direct and indirect effects of light availability and measured phenotypic selection on phenological traits that may enhance pollen receipt in the insect-pollinated herb Campanulastrum americanum. In a natural population, plants in the sun had larger displays and received 7 times more visits than plants in the shade. Using experimental arrays to separate the direct effects of irradiance on insects from their response to display size, we found more visits to plants in the sun than in the shade, but no association between number of visits each flower received and display size. Plants in the sun were not pollen limited but pollen-augmented shade flowers produced 50% more seeds than open-pollinated flowers. Phenological traits, which may influence pollen receipt, were not under direct selection in the sun. However, earlier initiation and a longer duration of flowering were favored in the shade, which may enhance visitation in this pollen-limited habitat.  相似文献   

16.

Premise

The role of pollinators in evolutionary floral divergence has spurred substantial effort into measuring pollinator-mediated phenotypic selection and its variation in space and time. For such estimates, the fitness consequences of pollination processes must be separated from other factors affecting fitness.

Methods

We built a fitness function linking phenotypic traits of food-deceptive orchids to female reproductive success by including pollinator visitation and pollen deposition as intermediate performance components and used the fitness function to estimate the strength of pollinator-mediated selection through female reproductive success. We also quantified male performance as pollinarium removal and assessed similarity in trait effects on male and female performance.

Results

The proportion of plants visited at least once by an effective pollinator was moderate to high, ranging from 53.7% to 85.1%. Tall, many-flowered plants were often more likely to be visited and pollinated. Given effective pollination, pollen deposition onto stigmas tended to be more likely for taller plants. Pollen deposition further depended on traits affecting the physical fit of pollinators to flowers (flower size, spur length), though the exact relationships varied in time and space. Using the fitness function to assess pollinator-mediated selection through female reproductive success acting on multiple traits, we found that selection varied detectably among taxa after accounting for sampling uncertainty. Across taxa, selection on most traits was stronger on average and more variable when pollination was less reliable.

Conclusions

These results support pollination-related trait–performance–fitness relationships and thus pollinator-mediated selection on traits functionally involved in the pollination process.  相似文献   

17.
传粉者的选择作用是花表型性状进化的重要驱动力, 解析选择作用的强度是理解花进化的关键。通过表型操控实验和表型选择研究能够分析花性状与其适合度的关系, 探究花性状的表型选择作用。为揭示花性状变化对雌性适合度的影响, 本研究处理展毛翠雀(Delphinium kamaonense var. glabrescens)花萼片大小, 并进行表型选择分析。结果表明: 人为减小展毛翠雀花萼片显著降低了传粉者的访花频率, 但是并没有影响种子产量(种子数和结籽率), 说明展毛翠雀花萼片的大小不影响种子产量, 可能主要吸引传粉昆虫输出花粉。通过雌性适合度(种子数量)估计表型选择梯度, 发现花萼片大小(长和宽)没有受到显著的直接选择梯度。但是, 花距长受到显著的线性选差和选择梯度, 表明花距的延长能够增加种子产量。本研究表明展毛翠雀花性状受到选择的作用, 但萼片和花距有不同的功能, 分别影响传粉者访问频率和种子产量。  相似文献   

18.
Pollinator‐mediated selection toward larger and abundant flowers is common in naturally pollen‐limited populations. However, floral antagonists may counteract this effect, maintaining smaller‐ and few‐flowered individuals within populations. We quantified pollinator and antagonist visit rates and determined a multiplicative female fitness component from attacked and non‐attacked flowers of the Brazilian hummingbird‐pollinated shrub Collaea cipoensis to determine the selective effects of pollinators and floral antagonists on flower size and number. We predicted that floral antagonists reduce the female fitness component and thus exert negative selective pressures on flower size and number, counteracting the positive effects of pollinators. Pollinators, mainly hummingbirds, comprised 4% of total floral visitation, whereas antagonist ants and bees accounted for 90% of visitation. Nectar‐robbers involved about 99% of floral antagonist visit rates, whereas florivores comprised the remaining 1%. Larger and abundant flowers increased both pollinator and antagonist visit rates and the female fitness component significantly decreased in flowers attacked by nectar‐robbers and florivores in comparison to non‐attacked flowers. We detected that pollinators favored larger‐ and many‐flowered individuals, whereas floral antagonists exerted negative selection on flower size and number. This study confirms that floral antagonists reduce female plant fitness and this pattern directly exerts negative selective pressures on flower size and number, counteracting pollinator‐mediated selection on floral attractiveness traits.  相似文献   

19.
The New Zealand alpine flora displays a range of unusual characteristics compared with other alpine floras, in particular the high frequency of species with small white flowers. The presence of both white and bright purple flowers on the same plant in the New Zealand alpine annual creeping eyebright (Euphrasia dyeri Wettst.) provides an ideal opportunity to investigate the significance of flower colour in an environment where coloured flowers are rare. The relationships among flower age, gender phase, reward availability and petal colour were assessed in natural populations of E. dyeri. The effect of pollination on flower colour was tested using hand pollination of bagged flowers. Direct observations and videos of flowers were used to assess patterns of flower visitation by native and introduced pollinators. Unpollinated white E. dyeri flowers changed from white to purple within 6 days. However, pollination of white flowers triggered a significantly faster colour change, typically within 1–2 days. White flowers had receptive stigmas, large amounts of lipid‐rich pollen and small amounts of nectar, whereas stigmas of purple flowers are not receptive and flowers did not provide pollen or nectar rewards. Flowers were mainly visited by native syrphid flies. Both native syrphids and introduced Bombus bees showed a marked avoidance of purple flowers, tending to preferentially visit white flowers. Our study suggests that flower colour change from white to bright purple in E. dyeri functions to direct pollinators to rewarding, receptive flowers. As many Euphrasia L. species are described as having variably coloured flowers, this mechanism may be more widespread in the genus. Furthermore, our results add to the growing evidence that the dominance of white flowers in the New Zealand alpine is not simply due to a lack of colour discrimination among pollinators.  相似文献   

20.
Diversity of flower traits is often proposed as the outcome of selection exerted by pollinators. Positive directional pollinator‐mediated selection on floral size has been widely shown to reduce phenotypic variance. However, the underlying mechanism of maintaining within‐population floral color polymorphism is poorly understood. Divergent selection, mediated by different pollinators or by both mutualists and antagonists, may create and maintain such polymorphism, but it has rarely been shown to result from differential behavior of one pollinator. We tested whether different behaviors of the same pollinators in morning and evening are associated with dimorphic floral trait in Linum pubescens, a Mediterranean annual plant that exhibits variable within‐population frequencies of dark‐ and light‐colored flower tubes. Usia bicolor bee‐flies, the major pollinators of L. pubescens, are mostly feeding in the flower in the morning, while in the evening they are mostly visiting the flowers for mating. In 2 years of studying L. pubescens in a single large population in the Carmel, Israel, we found in one year that dark‐centered flowers received significantly higher fraction of visits in the morning. Fitness was positively affected by number of visits, but no fitness differences were found between tube‐color morphs, suggesting that both morphs have similar pollination success. Using mediation analysis, we found that flower size was under positive directional pollinator‐mediated selection in both years, but pollinator behavior did not explain entirely this selection, which was possibly mediated also by other agents, such as florivores or a‐biotic stresses. While most pollinator‐mediated selection studies show that flower size signals food reward, in L. pubescens, it may also signal for mating place, which may drive positive selection. While flower size found to be under pollinator‐mediated selection in L. pubescens, differential behavior of the pollinators in morning and evening did not seem to explain flower color polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号