首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
  • Primary colonisation in invasive ranges most commonly occurs in disturbed habitats, where anthropogenic disturbance may cause physical damage to plants. The tolerance to such damage may differ between cytotypes and among populations as a result of differing population histories (adaptive differentiation between ruderal verus natural habitats). Moreover, founder populations often experience inbreeding depression, the effects of which may increase through physical damage due to inbreeding–environment interactions. We aimed to understand how such colonisation processes differ between diploid and tetraploid Centaurea stoebe populations, with a view to understanding why only tetraploids are invasive.
  • We conducted a clipping experiment (frequency: zero, once or twice in the growing season) on inbred versus outbred offspring originating from 37 C. stoebe populations of varying cytotype, range and habitat type (natural versus ruderal). Aboveground biomass was harvested at the end of the vegetation period, while re‐sprouting success was recorded in the following spring.
  • Clipping reduced re‐sprouting success and biomass, which was significantly more pronounced in natural than in ruderal populations. Inbreeding depression was not detected under benign conditions, but became increasingly apparent in biomass when plants were clipped. The effects of clipping and inbreeding did not differ between cytotypes.
  • Adaptive differentiation in disturbance tolerance was higher among populations than between cytotypes, which highlights the potential of pre‐adaptation in ruderal populations during early colonisation on anthropogenically disturbed sites. While the consequences of inbreeding increased through clipping‐mediated stress, they were comparable between cytotypes, and consequently do not contribute to understanding the cytotype shift in the invasive range.
  相似文献   

2.
Developmental instability (DI) is the sensitivity of a developing trait to random noise and can be measured by degrees of directionally random asymmetry [fluctuating asymmetry (FA)]. FA has been shown to increase with loss of genetic variation and inbreeding as measures of genetic stress, but associations vary among studies. Directional selection and evolutionary change of traits have been hypothesized to increase the average levels of FA of these traits and to increase the association strength between FA and population‐level genetic variation. We test these two hypotheses in three‐spined stickleback (Gasterosteus aculeatus L.) populations that recently colonized the freshwater habitat. Some traits, like lateral bone plates, length of the pelvic spine, frontal gill rakers and eye size, evolved in response to selection regimes during colonization. Other traits, like distal gill rakers and number of pelvic fin rays, did not show such phenotypic shifts. Contrary to a priori predictions, average FA did not systematically increase in traits that were under presumed directional selection, and the increases observed in a few traits were likely to be attributable to other factors. However, traits under directional selection did show a weak but significantly stronger negative association between FA and selectively neutral genetic variation at the population level compared with the traits that did not show an evolutionary change during colonization. These results support our second prediction, providing evidence that selection history can shape associations between DI and population‐level genetic variation at neutral markers, which potentially reflect genetic stress. We argue that this might explain at least some of the observed heterogeneities in the patterns of asymmetry.  相似文献   

3.
We examined the effects of habitat fragmentation of the white-starred robin Pogonocichla stellata metapopulation in the Taita Hills archipelago, a hotspot for biodiversity which was fragmented approximately 40 years ago. Using seven microsatellite markers, we analysed the robin's genetic structure and tested for equilibrium between migration and drift (testing the probability of decreased dispersal) as well as between mutation and drift (test for recent reduction in effective population size, i.e. bottlenecks). This metapopulation was found to retain relatively high levels of genetic variability (H(E) between 0.63 and 0.71) and to be in migration-drift equilibrium, suggesting that increased isolation between fragments did not have much effect on the dispersal between them. Furthermore, this equilibrium test greatly enhanced the interpretation of parameters (e.g. F(ST)) assumed to have reached an equilibrium value. In contrast to previous findings on the related and sympatric Taita thrush Turdus helleri (which is critically endangered), there were no indications for recent bottlenecks in any of the robin subpopulations. This difference can be attributed to the higher dispersal capacity of the robin compared with the thrush (deduced from both the genetic and capture-recapture data). Our results stress the importance of sustained dispersal for species conservation.  相似文献   

4.
It is often assumed that the negative effects of inbreeding on fitness (inbreeding depression, ID) are particularly strong under stressful conditions. However, ID may be relatively mild under types of stress that plant populations have experienced for a long time, because environment‐specific deleterious alleles may already have been purged. We examined the performance of open‐ and self‐pollinated progeny of the short‐lived calcareous grassland plant Anthyllis vulneraria under three intensities of each of five types of stress. Drought, nutrient deficiency, and defoliation were chosen as stresses typical for the habitat of origin, while shade and waterlogging were expected to be novel, unfamiliar stresses for A. vulneraria. The stresses reduced plant biomass by up to 91%, and the responses of the plants were mostly in line with the functional equilibrium hypothesis. There was significant ID in biomass (δ = 0.17), leaf chlorophyll content, and the number of root nodules of the legume, but the magnitude of ID was independent of the stress treatments. In particular, there was no significant interaction between inbreeding and the intensity of any stress type, and ID was not higher under novel than under familiar stresses. In addition, phenotypic plasticity in biomass allocation, leaf functional traits and in root nodulation of the legume to the various stress treatments was not influenced by inbreeding. Our findings do not support the common hypothesis of stronger ID under stressful environments, not even if the stresses are novel to the plants.  相似文献   

5.
Mean d2 is a recently devised microsatellite-based measure that is hypothesised to allow the detection of inbreeding depression and heterosis in free-living populations. Two studies that have investigated the measure have both demonstrated an association between mean d2 and traits related to fitness. Here we present an association between mean d1 and an important component of fitness, first-year overwinter survival, in a population of red deer on the Isle of Rum, Scotland. The association between survival and mean d2 differed between males and females. As predicted, outbred female calves (high mean d2) survived better than those that were inbred (low mean d2). However, the association was in the opposite direction in male calves. We suggest that this difference is due to different early growth strategies between the sexes. The association between mean d2 and survival was not significantly influenced by any single locus. Decomposition of mean d2 into a recent inbreeding component and an outbreeding component showed that it was the degree of outbreeding that influenced survival in males and both the degree of outbreeding and recent inbreeding that influenced survival in females. Our analyses suggest that mean d2 is an easy-to-calculate measure of inbreeding and degree of outbreeding that can reveal interesting interactions between genetics and ecology.  相似文献   

6.
The relation between inbreeding depression and rate of self-fertilization was studied in nine natural populations of the annual genus Amsinckia. The study included two clades (phylogenetic lineages) in which small-flowered, homostylous populations or species are believed to have evolved from large-flowered, heterostylous, self-compatible ones. In one lineage the small-flowered species is tetraploid with disomic inheritance. Rates of self-fertilization were 25% to 55% in the four large-flowered, heterostylous populations; 72% in a large-flowered but homostylous population; and greater than 99.5% in the four small-flowered, homostylous populations, which produce seed autonomously. When present, inbreeding depression occurred in the fertility but not the survival components of fitness. Using a cumulative fitness measure incorporating both survival and fertility (flower number), we found inbreeding depression to be lower in the four very highly self-fertilizing populations than in the five intermediate ones. The Spearman rank correlation between inbreeding depression and selfing rate for the nine populations was –0.50, but was not statistically significant (P = 0.12). Inbreeding depression was greater in the two tetraploid populations than in the very highly self-fertilizing, diploid ones. Phenotypic stability of progeny from self-fertilization tended to be higher in populations with lower inbreeding depression. We conclude that levels of self-fertilization and inbreeding depression in Amsinckia are determined more by other factors than by each other. Estimates of mutation rates and dominance coefficients of deleterious alleles, obtained from a companion study of the four highly self-fertilizing populations, suggest that a strong relationship may not be expected. We discuss the relationship of the present results to current theory of the coevolution of self-fertilization and inbreeding depression.  相似文献   

7.
Populations rarely show immediate genetic responses to habitat fragmentation, even in taxa that possess suites of traits known to increase their vulnerability to extinction. Thus conservation geneticists must consider the time scale over which contemporary evolutionary processes operate to accurately portray the effects of habitat isolation. Here, we examine the genetic impacts of fragmentation on the Florida sand skink Plestiodon reynoldsi, a sand swimming lizard that is highly adapted to the upland scrub habitat of central Florida. We studied fragments located on the southern Lake Wales Ridge, where human activity in the latter half of the 20th century has modified the natural patchiness of the landscape. Based on a relaxed molecular clock method, we estimate that sand skinks have persisted in this region for approximately 1.5 million years and that the time frame of human disturbance is equivalent to fewer than 30 skink generations. Using genotypes from eight microsatellite loci, we screened for molecular signatures of this disturbance by assessing congruence between population structure, as inferred from spatially-informed Bayesian assignment tests, and the current geography of scrub fragments. We also tested for potential intrapopulation genetic effects of inbreeding in isolated populations by comparing the average pairwise relatedness of individuals within fragments of different areas and isolation. Our results indicate that although some patches show a higher degree of relatedness than expected under random mating, the genetic effects of recent isolation are not evident in this part of the species’ range. We argue that this result is an artefact of a time-lag in the response to disturbance, and that species-typical demographic features may explain the genetic inertia observed in these populations.  相似文献   

8.
Heterozygosity fitness correlations (HFCs) have frequently been used to detect inbreeding depression, under the assumption that genome‐wide heterozygosity is a good proxy for inbreeding. However, meta‐analyses of the association between fitness measures and individual heterozygosity have shown that often either no correlations are observed or the effect sizes are small. One of the reasons for this may be the absence of variance in inbreeding, a requisite for generating general‐effect HFCs. Recent work has highlighted identity disequilibrium (ID) as a measure that may capture variance in the level of inbreeding within a population; however, no thorough assessment of ID in natural populations has been conducted. In this meta‐analysis, we assess the magnitude of ID (as measured by the g2 statistic) from 50 previously published HFC studies and its relationship to the observed effect sizes of those studies. We then assess how much power the studies had to detect general‐effect HFCs, and the number of markers that would have been needed to generate a high expected correlation (r2 = 0.9) between observed heterozygosity and inbreeding. Across the majority of studies, g2 values were not significantly different than zero. Despite this, we found that the magnitude of g2 was associated with the average effect sizes observed in a population, even when point estimates were nonsignificant. These low values of g2 translated into low expected correlations between heterozygosity and inbreeding and suggest that many more markers than typically used are needed to robustly detect HFCs.  相似文献   

9.
Whether or not developmental instability (DI) has evolutionary potential is subject to much debate. Generally, studies fail to detect significant heritability for fluctuating asymmetry (FA), a trait assumed to reflect DI. In addition, between‐trait correlations in FA are low, suggesting that DI is trait‐ rather than individual‐specific. Among the various attempts to explain these patterns, the overall weak correlation between FA and DI at the individual level has received most attention. Presently, the concept of hypothetical repeatability (R) of individual FA allows us to correct for this weak relationship, transforming patterns of FA into unbiased patterns of DI. By applying R to data presented in the literature, we show that heritability of DI remains lower than predicted but between‐trait correlations in DI substantially increase after transformation. We further provide evidence that DI changes from a trait‐ to an individual‐specific property with higher values of R. As increasing hypothetical repeatability might co‐occur with increased environmental or genetic stress, we discuss the potential implications of our results for the study of evolution of stress resistance. From this we conclude that there is an urgent need for studies that compare the evolutionary potential of developmental instability under a variety of stress conditions.  相似文献   

10.
Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex‐biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free‐ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free‐ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability.  相似文献   

11.
A fundamental assumption underlying the importance of genetic risks within conservation biology is that inbreeding increases the extinction probability of populations. Although inbreeding has been shown to have a detrimental impact on individual fitness, its contribution to extinction is still poorly understood. We have studied the consequences of different levels of prior inbreeding for the persistence of small populations using Drosophila melanogaster as a model organism. To this end, we determined the extinction rate of small vial populations differing in the level of inbreeding under both optimal and stress conditions, i.e. high temperature stress and ethanol stress. We show that inbred populations have a significantly higher short‐term probability of extinction than non‐inbred populations, even for low levels of inbreeding, and that the extinction probability increases with increasing inbreeding levels. In addition, we observed that the effects of inbreeding become greatly enhanced under stressful environmental conditions. More importantly, our results show that the impact of environmental stress becomes significantly greater for higher inbreeding levels, demonstrating explicitly that inbreeding and environmental stress are not independent but can act synergistically. These effects seem long lasting as the impact of prior inbreeding was still qualitatively the same after the inbred populations had been expanded to appreciable numbers and maintained as such for approximately 50 generations. Our observations have significant consequences for conservation biology.  相似文献   

12.
Anthropogenic landscape change (i.e., disturbance) is recognized as an important factor in the decline and extirpation of wildlife populations. Understanding and monitoring the relationship between wildlife distribution and disturbance is necessary for effective conservation planning. Many studies consider disturbance as a covariate explaining wildlife behavior. However, we propose that there are several advantages to considering the spatial relationship between disturbance and wildlife directly using utilization distributions (UDs), including objective assessment of the spatially explicit overlap between wildlife and disturbance, and the ability to track trends in this relationship over time. Here, we examined how central mountain woodland caribou (Rangifer tarandus caribou) distribution changed over time in relation to (i) anthropogenic disturbance, baseline range (defined using telemetry data from 1998 to 2005), and alpine habitat; and (ii) interannual climate variation (North Pacific Index; NPI). We developed seasonal UDs for caribou in west‐central Alberta and east‐central British Columbia, Canada, monitored with GPS collars between 1998 and 2013. We mapped the cumulative annual density of disturbance features within caribou range and used indices of overlap to determine the spatial relationship and trend between caribou UDs, anthropogenic disturbance, baseline range, alpine habitat, and the NPI. Anthropogenic disturbance increased over time, but the overlap between caribou UDs and disturbance did not. Caribou use of alpine habitat during spring, fall, and late winter increased over time, concurrent with a decrease in use of baseline range. Overlap between caribou UDs and disturbance increased during spring and fall following relatively cold, snowy winters (high NPI), but overall, climate did not explain changes in caribou distribution over time. We provide evidence supporting the hypothesis that caribou populations adjust their spatial distribution in relation to anthropogenic landscape change. Our findings could have implications for population persistence if distributional shifts result in greater use of alpine habitat during winter. Monitoring long‐term changes in the distribution of populations is a valuable component of conservation planning for species at risk in disturbed landscapes.  相似文献   

13.
We report the results of a census of Indri indri conducted in Betampona Nature Reserve, a lowland rain forest in eastern Madagascar. In addition, we conducted a year-long study of the ranging behavior of 3 groups in the southwestern region of the reserve. We used 2 methods to calculate population density and home range size, and to provide minimum and maximum estimates. Population density of Indri indri ranged from 6.9–13.2 individuals/km2 in Betampona. Mean home range size is 27 ha. The values for population density and home range size are intermediate between values for Indri indri in selectively logged and undisturbed montane rain forest. Our results suggest a relationship between habitat disturbance, population density and home range size for the species. Recent increases in habitat disturbance appear to cause an increase in population density and a decrease in home range size. The results are consistent with ones for other folivorous primate populations. Further research on habitat requirements of Indri and availability in Betampona is necessary to investigate the possibility of translocating Indri from nearby forest fragments into Betampona.  相似文献   

14.
Theory predicts that inbreeding depression (ID) should decline via purging in self‐fertilizing populations. Yet, intraspecific comparisons between selfing and outcrossing populations are few and provide only mixed support for this key evolutionary process. We estimated ID for large‐flowered (LF), predominantly outcrossing vs. small‐flowered (SF), predominantly selfing populations of the dune endemic Camissoniopsis cheiranthifolia by comparing selfed and crossed progeny in glasshouse environments differing in soil moisture, and by comparing allozyme‐based estimates of the proportion of seeds selfed and inbreeding coefficient of mature plants. Based on lifetime measures of dry mass and flower production, ID was stronger in nine LF populations [mean δ = 1?(fitness of selfed seed/fitness of outcrossed seed) = 0.39] than 16 SF populations (mean δ = 0.03). However, predispersal ID during seed maturation was not stronger for LF populations, and ID was not more pronounced under simulated drought, a pervasive stress in sand dune habitat. Genetic estimates of δ were also higher for four LF (δ = 1.23) than five SF (δ = 0.66) populations; however, broad confidence intervals around these estimates overlapped. These results are consistent with purging, but selective interference among loci may be required to maintain strong ID in partially selfing LF populations, and trade‐offs between selfed and outcrossed fitness are likely required to maintain outcrossing in SF populations.  相似文献   

15.
Anthropogenic habitat fragmentation often restricts gene flow and results in small populations that are at risk of inbreeding. However, some endangered species naturally occupy patchy habitat where local population extinction and recolonization are normal. We investigated population fragmentation in the range‐restricted New Zealand small‐scaled skink (Oligosoma microlepis), documenting changes in habitat occupancy and analyzing mitochondrial, microsatellite, and morphological variation sampled across the geographical range of the species (approximately 100 km2). Small‐scaled skinks have a strong preference for rocky outcrops that exist in a mosaic of other habitat types. A metapopulation structure was indicated by both local extinction and colonization of new sites. We found relatively high mtDNA nucleotide site diversity within this narrow range (π = 0.004; 16S), evidence of inter‐patch gene flow, and no statistical support for inbreeding. Gene flow was limited by geographical distance, although the existence of pasture between habitat patches apparently has not prevented skink dispersal. Generalized linear models indicated an association between body size and location suggesting a local environmental influence on phenotype. Prior to human‐induced habitat modification, native forest probably separated preferred sites and, less than 2000 years ago, volcanic activity devastated much of the area currently occupied by O. microlepis. This skink appears able to re‐establish populations if other human‐linked factors such as agricultural intensification and introduced predators are limited. Although in contrast to expectations for a scarce and localized species living in a highly modified landscape, this lizard may have previously adapted to a dynamic, mosaic environment mediated by volcanism.  相似文献   

16.
During the last 40 years, few species of African birds have undergone more taxonomic revision than the olive thrush Turdus olivaceus. This is due to disagreement on how to partition the striking phenotypic variation among allopatric populations. The current consensus is to recognise one species T. olivaceus , split into three assemblages: (1) the olivaceus group restricted to southern Africa, (2) the swynnertoni group of the Zimbabwean and southern Malawi highlands, and (3) the abyssinicus group of the montane highlands of eastern and central Africa. Mitochondrial DNA sequences from 63 individuals were analysed to investigate the phylogenetic relationships among 16 taxa (species and subspecies) in the olivaceus species complex (plus seven outgroup species), with, particular emphasis on the relationships and taxonomic status of the endangered Taita thrush ( helleri ). Phylogenetic hypotheses generated using parsimony, maximum likelihood, and Bayesian inference identified a number of discrete clades corresponding to recognised subspecies. Northern ( abyssinicus clade) and southern populations ( olivaceus + swynnertoni clade) of olive thrush differ by 9–10% in sequence divergence. Furthermore, all analytical methods suggested that helleri (Taita Hills) and roehli (Usambara and Pare Mountains) are reciprocally monophyletic with respect to mtDNA, and 2.5 to 10.5% divergent from all other forms of olive thrush. Both helleri and roehli are surrounded in adjacent highlands by populations of olive thrush that represent a more recent radiation, suggesting that helleri and roehli may be relict taxa which have been able to maintain their genetic integrity. The results of this study support previous arguments for recognizing the arid/woodland T. smithi as a species distinct from other southern African forest populations of T. olivaceus (including the swynnertoni group). Results further suggest that T. abyssinicus , T. helleri , and T. roehli be accorded species rank.  相似文献   

17.
Human activities impact upon natural habitats used by birds for breeding and foraging, and lead to changes in the composition and spatial distribution of predator communities, mainly through loss, fragmentation and disturbance of formerly pristine habitat. Yet possible fitness consequences of such changes through impacts on bird nest-site selection remain poorly known. Here we study nest-site selection and reproductive success of Placid Greenbuls Phyllastrephus placidus in the Taita Hills, southeast Kenya. We show that habitat features associated with nest-site selection by this insectivorous, open-cup-nesting bird species vary among forest fragments that are exposed to different levels of habitat disturbance. Such differences in sites selected for breeding result from a plastic response to fragment-specific conditions or may be driven by fragment-specific variation in the distribution and availability of certain habitat features. Given the overall high nest predation rates in our study area, we expected variation in nest-site selection to correlate with reproductive success and nestling condition, but detected no such relationship. Because predator density and nest predation rates may vary strongly in space and time, a better understanding of spatio-temporal variation in predator communities is needed to assess the possible adaptive value of nest-site selection strategies for reducing the high predation rates that are typical for this and many other open-cup-nesting tropical passerines.  相似文献   

18.
A population viability analysis (PVA) using the computer package VORTEX was conducted to assess the minimum viable population (MVP) of the Atlantic Forest endemic primate Brachyteles hypoxanthus. The objectives were: (1) to estimate demographic and genetic MVPs that could be used as quasi-extinction thresholds for future modeling, and (2) to estimate the minimum area of suitable habitat (MASH). The model predicted that populations of 40 and 700 individuals were necessary to achieve demographic and genetic stability, respectively. The model was more sensitive to changes in inbreeding depression, sex ratio and reproduction (percentage of breeding females). MASH estimated to contain genetically viable populations reached 11,570 ha. Muriquis have managed to persist despite severe habitat disturbance, but the results suggest that although most of the extant populations are not threatened by extinction, they are too small to be genetically viable in the long-run, and will loose most of their heterozygosity.  相似文献   

19.
Abstract Fluctuating asymmetry (FA), a ubiquitous type of asymmetry of bilateral characters, often has been used as a measure of developmental instability in populations. FA is expected to increase in populations subjected to genetic stressors such as inbreeding or environmental stressors such as toxins or parasites, although results have not always been consistent. We tested whether FA in four skeletal size characters and mandible shape was greater in a population of wild‐derived mice reared in the laboratory and subjected to one generation of inbreeding (F = 0.25) versus that in an outbred group (F= 0.00). FA did not significantly differ between the inbred and outbred groups, despite the fact that these two groups differed dramatically in fitness under seminatural population conditions. As far as we know, this is the first study to evaluate the relationship between FA and inbreeding in wild house mice, and our general conclusion is opposite that of earlier work on laboratory inbred strains of mice and their hybrids. Size for two of the characters was significantly less in inbreds than in outbreds, however, and there was a significant difference between inbreds and outbreds in the signed differences of right and left sides in one character (humerus length). Some of the mice in both groups also were heterozygous or homozygous carriers of the t‐complex. Because mice carrying this chromosome 17 variant are known to have reduced fitness, we also tested whether they had greater FA than mice carrying non‐t‐haplotypes. The overall level of a composite FA index calculated from all four characters was in fact significantly higher in the t‐bearing mice. These combined results suggest that FA is not a generally sensitive proxy measure for fitness, but can be associated with fitness reductions for certain genetic stressors.  相似文献   

20.
Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F(ST) = 0.022; amova; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H(O) = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F(IS) is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号