首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A population viability analysis (PVA) using the computer package VORTEX was conducted to assess the minimum viable population (MVP) of the Atlantic Forest endemic marsupial Micoureus paraguayanus. The objectives were: to estimate demographic and genetic MVPs that could be used as quasi-extinction thresholds for future modeling, to estimate the minimum area of suitable habitat (MASH), and to use these results to apply IUCN red list criteria so as to suggest its proper status classification. The model predicted that populations of 100 and 2000 individuals were necessary to achieve demographic and genetic stability, respectively, within a time frame of 100 years. The model was sensitive to changes in inbreeding depression, mortality and reproduction. MASH estimated to contain genetically viable populations reached 1300 ha. Fortunately, there still are quite a number of forest remnants equal to or larger than this. Isolation is suggested as the principal threat facing M. paraguayanus. Therefore, promoting conditions for dispersal together with efforts dealing with translocation, should prove to be the most appropriate management strategies for M. paraguayanus at this stage. A landscape pattern composed of large patches holding MVPs and sets of smaller patches harboring viable metapopulations that maximize probability of dispersal can provide a viable scenario for the conservation of M. paraguayanus.  相似文献   

2.
Habitat loss and fragmentation are serious threats to biodiversity conservation in the Atlantic Forest. A network of protected reserves is essential to the protection of native fauna and flora. However, internal and external factors may threaten the preservation of biota, thus population viability analyses (PVA) are important tools in reserve design and management planning. A PVA was carried out, using the computer package VORTEX, to assess the effectiveness of the reserve network of Rio de Janeiro State in Brazil in retaining viable populations of the endemic marsupial Micoureus travassosi. The PVA takes into account demographic, genetic and environmental stochastic events and catastrophes (fire). Rio de Janeiro state has 31 reserves, and 20 of those were considered to retain viable populations for 100 years, whereas eight were predicted to suffer from genetic decay, two from both genetic decay and demographic stochasticity, and one of them probably has an extinct population. The minimum area of suitable habitat needed to maintain a minimum viable population of M. travassosi is estimated at 3600ha. Sensitivity analysis was run for mortality, sex ratio, percentage of reproductive females, inbreeding depression and probability of catastrophes, and suggests that inbreeding depression is important in small population sizes, whereas the effects of catastrophes were significant only for large populations. Although the model indicates that some populations will suffer from demographic and/or genetic stochasticity, the reserve network of Rio de Janeiro state will likely keep M. travassosi's populations for the next 100 years.  相似文献   

3.
最小适生面积(MASH)指在一定的时空范围内物种能稳定存在的最小生境面积,它是种群生存力分析(PVA)的重要方法之一.本文采用基于种群数量-面积关系原理的MASH模型模拟了银川平原设施农业景观下破碎化麦田麦蚜、初寄生蜂与重寄生蜂种群发生的MASH.研究表明:密度 面积、增长速度-面积关系模型间存在反比例函数关系,不同物种存在的函数关系明显不同,尤其在不同营养级别的物种间,其函数关系差异更为明显.根据密度-面积关系,利用多项式回归模型计算了麦二叉蚜、麦长管蚜、燕麦蚜茧蜂、烟蚜茧蜂与蚜虫宽缘金小蜂的MASH,其营养级间的MASH差异显著.不同物种的MASH与营养级高低、体型大小、生境质量等有关.初寄生蜂最高的寄生率出现在800~1000 m2,可作为利用初寄生蜂自然控制麦蚜的依据,而不同营养级物种MASH差异可用于害虫的种群控制.  相似文献   

4.
The agricultural scene has changed over the past decades, resulting in a declining population trend in many species. It is therefore important to determine the factors that the individual species depend on in order to understand their decline. The landscape changes have also resulted in habitat fragmentation, turning once continuous populations into metapopulations. It is thus increasingly important to estimate both the number of individuals it takes to create a genetically viable population and the population trend. Here, population viability analysis and habitat suitability modeling were used to estimate population viability and future prospects across Europe of the Little Owl Athene noctua, a widespread species associated with agricultural landscapes. The results show a high risk of population declines over the coming 100 years, especially toward the north of Europe, whereas populations toward the southeastern part of Europe have a greater probability of persistence. In order to be considered genetically viable, individual populations must count 1,000–30,000 individuals. As Little Owl populations of several countries count <30,000, and many isolated populations in northern Europe count <1,000 individuals, management actions resulting in exchange of individuals between populations or even countries are probably necessary to prevent losing <1% genetic diversity over a 100‐year period. At a continental scale, a habitat suitability analysis suggested Little Owl to be affected positively by increasing temperatures and urban areas, whereas an increased tree cover, an increasing annual rainfall, grassland, and sparsely vegetated areas affect the presence of the owl negatively. However, the low predictive power of the habitat suitability model suggests that habitat suitability might be better explained at a smaller scale.  相似文献   

5.
Habitat loss and fragmentation can influence the genetic structure of biological populations. We studied the genetic consequences of habitat fragmentation in Florida black bear (Ursus americanus floridanus) populations. Genetic samples were collected from 339 bears, representing nine populations. Bears were genotyped for 12 microsatellite loci to estimate genetic variation and to characterize genetic structure. None of the nine study populations deviated from Hardy–Weinberg equilibrium. Genetic variation, quantified by mean expected heterozygosity (H E), ranged from 0.27 to 0.71 and was substantially lower in smaller and less connected populations. High levels of genetic differentiation among populations (global F ST = 0.224; global R ST = 0.245) suggest that fragmentation of once contiguous habitat has resulted in genetically distinct populations. There was no isolation-by-distance relationship among Florida black bear populations, likely because of barriers to gene flow created by habitat fragmentation and other anthropogenic disturbances. These factors resulted in genetic differentiation among populations, even those that were geographically close. Population assignment tests indicated that most individuals were genetically assigned to the population where they were sampled. Habitat fragmentation and anthropogenic barriers to movement appear to have limited the dispersal capabilities of the Florida black bear, thereby reducing gene flow among populations. Regional corridors or translocation of bears may be needed to restore historical levels of genetic variation. Our results suggest that management actions to mitigate genetic consequences of habitat fragmentation are needed to ensure long-term persistence of the Florida black bear.  相似文献   

6.
The European pond turtle (Emys orbicularis) is threatened and in decline in several regions of its natural range, due to habitat loss combined with population fragmentation. In this work, we have focused our efforts on studying the genetic diversity and structure of Iberian populations with a fine-scale sampling (254 turtles in 10 populations) and a representation from North Africa and Balearic island populations. Using both nuclear and mitochondrial markers (seven microsatellites, ∼1048 bp nDNA and ∼1500 bp mtDNA) we have carried out phylogenetic and demographic analyses. Our results show low values of genetic diversity at the mitochondrial level although our microsatellite dataset revealed relatively high levels of genetic variability with a latitudinal genetic trend decreasing from southern to northern populations. A moderate degree of genetic differentiation was estimated for Iberian populations (genetic distances, F ST values and clusters in the Bayesian analysis). The results in this study combining mtDNA and nDNA, provide the most comprehensive population genetic data for E. orbicularis in the Iberian Peninsula. Our results suggest that Iberian populations within the Iberian–Moroccan lineage should be considered as a single subspecies with five management units, and emphasize the importance of habitat management rather than population reinforcement (i.e. captive breeding and reintroduction) in this long-lived species.  相似文献   

7.
Historical and demographic data were used in a computer model tosimulate neutral genetic change in populations of the Laysanfinch (Telespiza cantans), an insular passerine bird that hasundergone documented founder events at Pearl and Hermes reef(PHR). Measures of genetic variation in the natural PHRpopulations generally matched those in the simulated populations,except that heterozygosity on Southeast Island was lower than themodel predicted, and the heterozygote excess in the naturalpopulations had a low probability of occurrence in the simulatedpopulations. The estimate of effective population size (N e) fromthe stochastic demographic model matched the estimate fromgenetic data for two populations, but the demographic estimatewas higher than the genetic estimate for Southeast Island. Smallfounder number was rejected as a possible explanation for thereduced genetic variation on Southeast. We suggest that N e wasoverestimated in part because we assumed seasonal variance inreproductive success. Additional variance components need to bemeasured in the field and incorporated into the model. Accounting for the heterozygote excess also requires furthertheoretical and field investigations. Possible explanations forthe excess include inbreeding depression, incest avoidance, andthe effect of polygyny on heterozygote excess in smallpopulations. We concluded that the Pearl and Hermes reefpopulation will continue to lose genetic variation at a highrate, and translocations from the native population on Laysan maybe required to maintain a viable population on the reef.  相似文献   

8.
Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts.  相似文献   

9.
Habitat loss and fragmentation are serious threats to biodiversity conservation in the Atlantic Forest. A network of protected areas is essential to the protection of native biodiversity. However, internal and external factors may threaten the preservation of biota, thus population viability analyses (PVA) are important tools in protected area design and management planning. A PVA was carried out, using the computer package VORTEX, to assess the effectiveness of the protected area network within the Atlantic Forest in Brazil in retaining viable populations of the endemic primate Brachyteles hypoxanthus. The Brazilian Atlantic Forest has 42 protected areas within B. hypoxanthus geographic distribution area, and only five of those were considered to retain viable populations for 50 generations, whereas 28 were predicted to suffer from genetic decay, seven from both genetic decay and demographic stochasticity, and two of them are probably extinct populations. The model indicates that although the protected area network of the Atlantic Forest will likely keep B. hypoxanthus populations for the next 50 generations, most of them (35 out of 42, or 83%) will be facing some kind of demographic and/or genetic problem and will probably need management actions to be implemented in order to ensure their persistence.  相似文献   

10.
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.  相似文献   

11.
Translocations are becoming increasingly popular as appropriate management strategies for the genetic restoration of endangered species and populations. Although a few studies have shown that the introduction of novel alleles has reversed the detrimental effects of inbreeding over the short-term (i.e., genetic rescue), it is not clear how effective such translocations are for both maintaining neutral variation that may be adaptive in the future (i.e., genetic restoration) and increasing population viability over the long-term. In addition, scientists have expressed concerns regarding the potential genetic swamping of locally adapted populations, which may eliminate significant components of genetic diversity through the replacement of the target population by the source individuals used for translocations. Here we show that bird translocations into a wild population of greater prairie-chickens (Tympanuchus cupido pinnatus) in southeastern Illinois were effective in both removing detrimental variation associated with inbreeding depression as well as restoring neutral genetic variation to historical levels. Furthermore, we found that although translocations resulted in immediate increases in fitness, the demographic recovery and long-term viability of the population appears to be limited by the availability of suitable habitat. Our results demonstrate that although translocations can be effective management tools for the genetic restoration of wild populations on the verge of extinction, their long-term viability may not be guaranteed unless the initial conditions that led to most species declines (e.g., habitat loss) are reversed.  相似文献   

12.
Population viability analysis (PVA) has frequently been used in conservation biology to predict extinction rates for threatened or endangered species. In this study, we used VORTEX to model Korean long-tailed goral (Naemorhedus caudatus) using previously collected ecological data. We focused on modelling population extinction, mean population size and heterozygosity. The minimum viable population size was found to be at least 50 gorals for 100 years, regardless of carrying capacity. However, populations with fewer than 50 gorals could not remain successful in the model. Inbreeding depression, catastrophes and supplementation also affected patterns of population extinction, mean population size and heterozygosity. Supplementation with new individuals had the strongest effect on extinction, mean population size and heterozygosity, followed by initial population size, inbreeding, catastrophes and carrying capacity. These results suggest that a supplementation by extra goral individuals from goral proliferation facilities would be the most helpful means for the restoration programme. More Korean goral-specific information regarding demographic and habitat parameters is needed for further PVA of the species.  相似文献   

13.
Kramer A  Sarnelle O 《Oecologia》2008,157(4):561-569
The Allee effect can result in a negative population growth rate at low population density. Consequently, populations below a minimum (critical) density are unlikely to persist. A lower limit on population size should constrain the loss of genetic variability due to genetic drift during population bottlenecks or founder events. We explored this phenomenon by modeling changes in genetic variability and differentiation during simulated bottlenecks of the alpine copepod, Hesperodiaptomus shoshone. Lake surveys, whole-lake re-introduction experiments and model calculations all indicate that H. shoshone should be unlikely to establish or persist at densities less than 0.5–5 individuals m−3. We estimated the corresponding range in minimum effective population size using the distribution of habitat (lake) sizes in nature and used these values to model the expected heterozygosity, allelic richness and genetic differentiation resulting from population bottlenecks. We found that during realistic bottlenecks or founder events, >90% of H. shoshone populations in the Sierra Nevada may be resistant to significant changes in heterozygosity or genetic distance, and 70–75% of populations may lose <10% of allelic richness. We suggest that ecological constraints on minimum population size be considered when using genetic markers to estimate historical population dynamics.  相似文献   

14.
The Ganges–Brahmaputra–Meghna and Karnaphuli (GBMK) River Basin in Nepal, India, and Bangladesh is among the world's most biodiverse river basins. However, human‐induced habitat modification processes threaten the ecological structure of this river basin. Among the GBMK’s diverse flora and fauna of this freshwater ecosystem, the endemic Ganges River dolphin (Platanista gangetica gangetica; GRD) is one of the most charismatic species in this freshwater ecosystem. Though a >50% population size reduction has occurred since 1957, researchers and decision‐makers often overlook the persistence (or evolutionary potential) of this species in the highly fragmented GBMK. We define the evolutionary potential as the ability of species/populations to adapt in a changing environment by maintaining their genetic diversity. Here, we review how evolutionary trap mechanisms affect the dynamics and viability of the GRD (hereafter Ganges dolphin) populations after rapid declines in their population size and distribution. We detected six potential trap mechanisms that might affect the Ganges dolphin populations discretely or in combination: (a) habitat modification; (b) occurrence of finite and geographically restricted local populations; (c) ratio of effective to estimate population size; (d) increasing risk of inbreeding depression in genetically isolated groups; (e) at‐risk behavioral attributes; and (f) direct fisheries–dolphin interactions. Because evolutionary traps appear most significant during low water season, they adversely affect demographic parameters, which reduce evolutionary potential. These traps have already caused local extirpation events; therefore, we recommend translocation among populations, including restoring and preserving essential habitats as immediate conservation strategies. Integrative evolutionary potential information based on demographic, genetic, and environmental data is still lacking. Thus, we identify gaps in the knowledge and suggest integrative approaches to understand the future of Ganges dolphins in South Asian waterways.  相似文献   

15.
Grevillea iaspicula is an endangered shrub known from only eight small populations (<250 individuals) in south-eastern Australia. The species is threatened by combined ecological and genetic factors, e.g. land conversion, weed invasion, low recruitment and low gene flow among populations. The populations also show large variance in male fitness and limited mate availability which are thought to arise as a consequence of gametophytic self-incompatibility (GSI). This study has used an individual-based, spatially explicit simulation model to explore the interaction between GSI and mate limitation in this species, as well as its effect on long-term population viability. The model was parameterised with demographic and genetic data obtained from 2 years of population monitoring. Simulation results identified extremely low establishment rates as the most critical factor currently influencing the persistence of G. iaspicula populations and indicated that the extant populations are at serious risk of extinction in the near future unless this is altered by, at very least, an order of magnitude higher. SI was shown to affect the magnitude of variation in establishment but this effect was masked when establishment was critically low. Disassortative mating, owing to low allelic richness at the S-locus, had the negative demographic effect of restricting mating to relatively few compatible plants. Restricted mate availability imposed additional limitations to the viability of populations but, given a 20-fold increase in establishment rate, population fluctuations stabilised. The long-term viability of G. iaspicula is bleak without artificial augmentation of the populations but management planning must also consider genetic processes, including SI, to ensure such strategies optimise the benefits gained.  相似文献   

16.
Hucho taimen are listed as endangered in China. The population size has declined recently, prompting an increase in the level of listing from grade three in 2002 to grade five in 2006. We analyzed the genetic diversity of wild populations using 17 microsatellite markers to establish a scientific basis for conservation of this species. We collected tissue samples from four populations in the Heilongjiang River basin: Huma River (HM), Hutou (HT), Haiqing (HQ), and Zhuaji (ZJ). A total of 21 loci were amplified, 18 of which were polymorphic. The number of alleles per locus ranged from 2 to 9 (mean: 4.1905). There were 13 highly polymorphic loci and 5 moderately polymorphic loci. Analysis of five genetic diversity parameters (Na, Ne, Ho, He, and PIC) suggested moderate levels of diversity within the populations. The populations were ranked HT > HQ > ZJ > HM, but the differences in diversity were not statistically significant (P > 0.05). A comparison of variation among all four populations suggested Hardy–Weinberg disequilibrium at 20% of the loci. Genetic differentiation (Fst) was 0.0644 and the gene flow among populations was estimated at 3.36 individuals per generation. The majority of diversity (93.88%) occurred among individuals within a population. In contrast, relatively little (6.12%) of the genetic diversity was distributed between the populations. An analysis of genetic differentiation and genetic distance between pairs of populations revealed that both parameters were higher in comparisons of the HM population to the HT, HQ, and ZJ populations than among the three latter populations. This suggests that the HM population has a distinct genetic structure. We hypothesize that habitat degradation and excessive fishing, not low genetic diversity, has caused the decline in H. taimen populations. However, this species should be protected from further declines in genetic diversity.  相似文献   

17.
Colonisation is a fundamental ecological and evolutionary process that drives the distribution and abundance of organisms. The initial ability of colonists to establish is determined largely by the number of founders and their genetic background. We explore the importance of these demographic and genetic properties for longer term persistence and adaptation of populations colonising a novel habitat using experimental populations of Tribolium castaneum. We introduced individuals from three genetic backgrounds (inbred – outbred) into a novel environment at three founding sizes (2–32), and tracked populations for seven generations. Inbreeding had negative effects, whereas outbreeding generally had positive effects on establishment, population growth and long‐term persistence. Severe bottlenecks due to small founding sizes reduced genetic variation and fitness but did not prevent adaptation if the founders originated from genetically diverse populations. Thus, we find important and largely independent roles for both demographic and genetic processes in driving colonisation success.  相似文献   

18.
The brown trout populations of the Baltic Sea region have been drastically affected by various human activities during the past century. Due to their propensity to home to their natal site to spawn and their tendency to evolve local adaptations, populations may be genetically differentiated in water systems where no physical barriers preventing interbreeding exist. Consequently, identification of management units, a prerequisite for appropriate conservation and management planning, cannot necessarily be deduced from the physical properties of the habitat. In this study, microsatellite markers were employed to assess the spatio-temporal genetic structuring of inter-connected brown trout populations from a river-system in Northwest Russia. Populations were found to be genetically differentiated from each other (global F ST 0.06) and the genetic structuring within the river to follow an isolation by distance pattern. Indications of temporal stability were found in some populations, however others appeared to be temporally unstable suggesting differences in the demographic forces affecting the populations. Based on the observed isolation by distance pattern of genetic differentiation, preserving several breeding sites spaced evenly throughout the river-system would appear to be more appropriate than focussing conservation effort on any single stretch of the river. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We used genetic and demographic methods to estimate the variance effective population sizes (N e) of three populations of natterjack toads Bufo calamita in Britain. This amphibian breeds in temporary pools where survival rates can vary among families. Census population sizes (N) were derived from spawn string counts. Point and coalescent-based maximum likelihood estimates of N e based on microsatellite allele distributions were similar. N e/N ratios based on genetic estimates of N e ranged between 0.02 and 0.20. Mean demographic estimates of N e were consistently higher (2.7–8.0-fold) than genetic estimates for all three populations when variance in breeding success was evaluated at the point where females no longer influence their progeny. However, discrepancies between genetic and demographic estimators could be removed by using a model that included extra variance in survivorship (above to Poisson expectations) among families. The implications of these results for the estimation of N e in wild populations are discussed.  相似文献   

20.
Seed-set of the rare and threatened plant Senecio integrifolius increased significantly with population size. Experimental studies as well as field observations showed this to be due to density-dependent seed-set (Allee effect). Hand-pollination revealed lower seed-set, and a lower germination rate of inbred progeny than of outbred progeny, with great differences among populations. Contrary to general predictions in models of minimum viable population sizes, the present study indicates little negative effects of inbreeding in small populations. A genetic load model was invoked to explain the results, hypothesizing that purging of deleterious alleles in small populations has reduced inbreeding depression. However, no clear correlation between population size and genetic load was found. The results in this paper suggest that demographic and environmental factors are of greater immediate importance than population genetics in determining extinction probabilities of small plant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号