首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Group B streptococcus (GBS; Streptococcus agalactiae) serotype III is one of the most common and virulent serotypes of the species. It can be divided into several subtypes, which vary in their distribution among invasive isolates from different patient groups. In this study, we used 91 well-characterized GBS serotype III isolates to compare three subtyping methods, and developed a novel padlock probe and rolling circle amplification (RCA) method to identify informative single nucleotide polymorphisms (SNPs) that define the major subtypes. There was good agreement between partial sequencing of the capsule polysaccharide synthesis (cps) gene cluster, a 3-set genotyping system and multilocus sequence typing (MLST). Serosubtype III-2/multilocus sequence type (ST)-17 represents a virulent clone which is significantly associated with late onset GBS neonatal infections. RCA provides a simple, reproducible method for rapid identification of the two most common GBS serotype III subtypes (III-1/ST-19 and III-2/ST-17).  相似文献   

2.

Background

Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

C. jejuni HS:23 was a predominant serotype among GBS patients (50%), and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78%) of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01) was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs) and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970). C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex.

Conclusion/Significance

LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS strains. Particularly, the presence of a clonal and putative neuropathogenic C. jejuni HS:23 serotype may contribute to the high prevalence of C. jejuni related GBS in Bangladesh.  相似文献   

3.
For the first time, we used multilocus sequence typing (MLST) to understand how Romanian group B streptococcus (GBS) strains fit into the global GBS population structure. Colonising isolates recovered from adult human females were tested for antibiotic resistance, were molecularly serotyped based on the capsular polysaccharide synthesis (cps) gene cluster and further characterised using a set of molecular markers (surface protein genes, pilus-encoded islands and mobile genetic elements inserted in the scpB-lmb intergenic region). Pulsed-field gel electrophoresis was used to complement the MLST clonal distribution pattern of selected strains. Among the 55 strains assigned to six cps types (Ia, Ib, II-V), 18 sequence types (STs) were identified by MLST. Five STs represented new entries to the MLST database. The prevalent STs were ST-1, ST-17, ST-19 and ST-28. Twenty molecular marker profiles were identified. The most common profiles (rib+GBSi1+PI-1, rib+GBSi1+PI-1, PI-2b and alp2/3+PI-1, PI-2a) were associated with the cps III/ST-17 and cps V/ST-1 strains. A cluster of fluoroquinolone-resistant strains was detected among the cps V/ST-19 members; these strains shared alp1 and IS1548 and carried PI-1, PI-2a or both. Our results support the usefulness of implementing an integrated genotyping system at the reference laboratory level to obtain the reliable data required to make comparisons between countries.  相似文献   

4.
Group B Streptococcus (GBS) causes severe infections in infants and in immunocompromised adults. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. For this reason, it is important to be able to carry out immediate and comprehensive diagnostics of these infections. Seven genes important for screening of GBS infection were detected: cfb gene encoding the CAMP factor presented in every GBS; the cps operon genes such as cps1aH, cps1a/2/3IJ, and cps5O specific for capsular polysaccharide types Ia, III, and V, respectively; macrolide resistance genes ermB and mefA/E; and the gbs2018 S10 region specific for ST17 hypervirulent clone. Standardization of multiplex PCR with the use of seven primer pairs was performed on 81 bacterial strains representing different GBS isolates (n = 75) and other Gram-positive cocci (n = 10). Multiplex PCR can be used as an effective screening method to detect different sequences important for the screening of GBS infection.  相似文献   

5.
MALDI-TOF MS identified a 6250-Da protein specific to Sequence Type-1 (ST-1) strains and a 7625-Da protein specific to ST-17 strains when used for identification of Group B streptococci. The strains of these STs are major causes of meningitis and late-onset-disease in neonates. This rapid method of identification could thus be valuable in the evaluation of risk of neonatal diseases.  相似文献   

6.
Transmission of group B Streptococcus (GBS) from mothers to neonates during childbirth is a leading cause of neonatal sepsis and meningitis. Although subtyping tools have identified specific GBS phylogenetic lineages that are important in neonatal disease, little is known about the genetic diversity of these lineages or the roles that recombination and selection play in the generation of emergent genotypes. Here, we examined genetic variation, selection, and recombination in seven multilocus sequence typing (MLST) loci from 94 invasive, colonizing, and bovine strains representing 38 GBS sequence types and performed DNA sequencing and PCR-based restriction fragment length polymorphism analysis of several putative virulence genes to identify gene content differences between genotypes. Despite the low level of diversity in the MLST loci, a neighbor net analysis revealed a variable range of genetic exchange among the seven clonal complexes (CCs) identified, suggesting that recombination is partly responsible for the diversity observed between genotypes. Recombination is also important for several virulence genes, as some gene alleles had evidence for lateral gene exchange across divergent genotypes. The CC-17 lineage, which is associated with neonatal disease, is relatively homogeneous and therefore appears to have diverged independently with an exclusive set of virulence characteristics. These data suggest that different GBS genetic backgrounds have distinct virulence gene profiles that may be important for disease pathogenesis. Such profiles could be used as markers for the rapid detection of strains with an increased propensity to cause neonatal disease and may be considered useful vaccine targets.Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis (51) and causes infections in pregnant women, nonpregnant adults, and the elderly with underlying medical conditions. Maternal GBS colonization is a main risk factor for neonatal disease, and roughly 20 to 40% of pregnant women are colonized (14, 23). Colonization rates of up to 31% and 34% have been documented in young men (4) and nonpregnant women (4, 42), respectively, whereas a rate of 22% has been observed in individuals over 65 years of age (18). GBS has also been identified as the cause of bovine mastitis in up to 45% of symptomatic bovines (30). Nine distinct polysaccharide capsule types (serotypes) are known, and the serotype distribution varies by population.The genetic diversity of GBS populations has been studied using a variety of different methods, including restriction fragment length polymorphism (RFLP) (24), ribotyping (5, 25), pulsed-field gel electrophoresis (49), multilocus enzyme electrophoresis (MLEE) (45), random amplification of polymorphic DNA (36), restriction digestion pattern (RDP) typing (53), and multilocus sequence typing (MLST) (28). By utilizing methods that focus on conserved genetic changes within GBS strains, virulent GBS clones that have diversified genetically can be identified. Both MLEE and MLST can distinguish the major GBS serotype III clones associated with neonatal invasive disease as sequence type 17 (ST-17) in the MLST system (28, 29, 38) or electrophoretic type 1 in the MLEE system (45). This clone is also evident in the RDP system as RDP-III (53).A recent study of 75 GBS strains representing different sources and STs reported that the ST-17 lineage is relatively homogeneous and contains a unique set of surface proteins (9). Homogeneity within a GBS lineage that is significantly associated with neonatal disease is likely important for disease pathogenesis, though few studies have been conducted to identify specific differences in virulence characteristics between lineages. Similarly, the roles of selection and recombination in the generation of STs, as well as known virulence genes, have only recently been explored and require further investigation (9a). Here, we assess the genomic diversity of GBS strains representing a variety of common clonal genotypes, examine evidence for selection and recombination, and evaluate the extent of DNA polymorphism and allelic variation in several putative virulence genes.  相似文献   

7.
Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')(2) fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10(-/-)) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen.  相似文献   

8.
Streptococcus agalactiae (or group B streptococcus; GBS) is a leading cause of neonatal morbidity and mortality in the developed countries. Several epidemiological typing tools have been developed for GBS to investigate the association between genotype and disease and to assess genetic variations within genogroups. This study compared the semi-automated repetitive sequence-based PCR Diversilab® system (DL) with MLST and pulsed field gel electrophoresis (PFGE) for determining the relatedness of invasive GBS strains. We analysed 179 unrelated GBS strains isolated from adult (n = 108) and neonatal (n = 71) invasive infections. By MLST, strains were resolved into 6 clonal complexes (CCs) including 23 sequence-types (STs), and 4 unique STs, whereas DL differentiated these isolates into 12 rep-PCR clusters (rPCs) and 9 unique rep-PCR types. The discriminatory power of both methods was similar, with Simpson's diversity indexes of 71.9% and 70.6%, respectively. However, their clustering concordance was low with Wallace concordance coefficients inferior to 0.4. PFGE was performed on 31 isolates representative of the most relevant DLrPCs clustered within the 3 major MLST CCs (CC-17, CC-23 and CC-1). As already observed with MLST, the concordance of DL with PFGE was low for all three CCs (Wallace coefficient < 0.5), PFGE being more discriminative than rep-PCR. In summary, this work suggests that DL is less appropriate than MLST or PFGE to study GBS population genetic diversity.  相似文献   

9.
Streptococcus agalactiae (group B Streptococcus, GBS), a normal constituent of the intestinal microbiota is the major cause of human neonatal infections and a worldwide spread 'hypervirulent' clone, GBS ST-17, is strongly associated with neonatal meningitis. Adhesion to epithelial and endothelial cells constitutes a key step of the infectious process. Therefore GBS surface-anchored proteins are obvious potential adhesion mediators of barrier crossing and determinant of hypervirulence. This review addresses the most recent molecular insights gained from studies on GBS surface proteins proven to be involved in the crossing of the brain-blood barrier and emphasizes on the specificity of a hypervirulent clone that displays meningeal tropism.  相似文献   

10.
Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007–2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009–2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.  相似文献   

11.
Haemophilius influenzae, type b (Hib) bacteria, were genotyped by multilocus sequence typing (MLST) using 5 loci (adk, fucK, mdh, pgi, recA). 42 Moscow Hib strains (including 38 isolates form cerebrospinal fluid of children, who had purulent meningitis in 1999-2001, and 4 strains isolated from healthy carriers of Hib), as well as 2 strains from Yekaterinburg were studied. In MLST a strain is characterized, by alleles and their combinations (an allele profile) referred to also as sequence-type (ST). 9 Sts were identified within the Russian Hib bacteria: ST-1 was found in 25 strains (57%), ST-12 was found in 8 strains (18%), ST-11 was found in 4 strains (9%) and ST-15 was found in 2 strains (4.5%); all other STs strains (13, 14, 16, 17, 51) were found in isolated cases (2.3%). A comparison of allelic profiles and of nucleotide sequences showed that 93% of Russian isolates, i.e. strain with ST-1, 11, 12, 13, 15 and 17, belong to one and the same clonal complex. 2 isolates from Norway and Sweden from among 7 foreign Hib strains studied up to now can be described as belonging to the same clonal complex; 5 Hib strains were different from the Russian ones.  相似文献   

12.
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.  相似文献   

13.
Clostridium difficile has emerged rapidly as the leading cause of antibiotic-associated diarrheal disease, with the temporal and geographical appearance of dominant PCR ribotypes such as 017, 027 and 078. Despite this continued threat, we have a poor understanding of how or why particular variants emerge and the sources of strains that dominate different human populations. We have undertaken a breadth genotyping study using multilocus sequence typing (MLST) analysis of 385 C. difficile strains from diverse sources by host (human, animal and food), geographical locations (North America, Europe and Australia) and PCR ribotypes. Results identified 18 novel sequence types (STs) and 3 new allele sequences and confirmed the presence of five distinct clonal lineages generally associated with outbreaks of C. difficile infection in humans. Strains of animal and food origin were found of both ST-1 and ST-11 that are frequently associated with human disease. An in depth MLST analysis of the evolutionary distant ST-11/PCR ribotype 078 clonal lineage revealed that ST-11 can be found in alternative but closely related PCR ribotypes and PCR ribotype 078 alleles contain mutations generating novel STs. PCR ribotype 027 and 017 lineages may consist of two divergent subclades. Furthermore evidence of microdiversity was present within the heterogeneous clade 1. This study helps to define the evolutionary origin of dominant C. difficile lineages and demonstrates that C. difficile is continuing to evolve in concert with human activity.  相似文献   

14.
Eight strains of Bacillus cereus isolated from bacteremia and soft tissue infections were assigned to seven sequence types (STs) by multilocus sequence typing (MLST). Two strains from different locations had identical STs. The concatenated sequences of the seven STs were aligned with 65 concatenated sequences from reference STs and a neighbor-joining tree was constructed. Two strains were distantly related to all reference STs. Three strains were recovered in a clade that included Bacillus anthracis, B. cereus and rare Bacillus thuringiensis strains while the other three strains were assigned to two STs that were more closely affiliated to most of the B. thuringiensis STs. We conclude that invasive B. cereus strains do not form a single clone or clonal complex of highly virulent strains.  相似文献   

15.
The phylogenetic position and prophage DNA content of the genomes of 142 S. agalactiae (group-B streptococcus, GBS) isolates responsible for bacteremia and meningitis in adults and neonates were studied and compared. The distribution of the invasive isolates between the various serotypes, sequence types (STs) and clonal complexes (CCs) differed significantly between adult and neonatal isolates. Use of the neighbor-net algorithm with the PHI test revealed evidence for recombination in the population studied (PHI, P = 2.01 × 10(-6)), and the recombination-mutation ratio (R/M) was 6:7. Nevertheless, the estimated R/M ratio differed between CCs. Analysis of the prophage DNA regions of the genomes of the isolates assigned 90% of the isolates to five major prophage DNA groups: A to E. The mean number of prophage DNA fragments amplified per isolate varied from 2.6 for the isolates of prophage DNA group E to 4.0 for the isolates of prophage DNA group C. The isolates from adults and neonates with invasive diseases were distributed differently between the various prophage DNA groups (P < 0.00001). Group C prophage DNA fragments were found in 52% of adult invasive isolates, whereas 74% of neonatal invasive isolates had prophage DNA fragments of groups A and B. Differences in prophage DNA content were also found between serotypes, STs and CCs (P < 0.00001). All the ST-1 and CC1 isolates, mostly of serotype V, belonged to the prophage DNA group C, whereas 84% of the ST-17 and CC17 isolates, all of serotype III, belonged to prophage DNA groups A and B. These data indicate that the transduction mechanisms, i.e., gene transfer from one bacterium to another by a bacteriophage, underlying genetic recombination in S. agalactiae species, are specific to each intraspecies lineage and population of strains responsible for invasive diseases in adults and neonates.  相似文献   

16.
为了解不同鱼源无乳链球菌(Streptococcus agalactiae)分子分型特征, 分析菌株之间的相关性和同源性, 研究在采用S. agalactiae特异性cfb基因对分离菌株鉴定的基础上, 对26株不同鱼源S. agalactiae进行了荚膜多糖血清型(CPS)多重PCR鉴定, 同时采用多位点序列分型(MLST)和脉冲场凝胶电泳(PFGE)进行分子特征比较与同源性分析。结果显示, 26株菌CPS型存在Ia (n=22)和III型(n=4)两种类型, 其中黄河裸裂尻鱼源和罗非鱼源菌株均为Ia血清型, 齐口裂腹鱼源菌株存在Ia (n=2)和III (n=4)型两种CPS型; 多位点序列分型共得到3种STs序列型(ST-891、ST-103、ST-19), 其中黄河裸裂尻鱼源和罗非鱼源菌株均为新的序列型ST-891, 齐口裂腹鱼源菌株存在ST-103和ST-19两种STs型; PFGE聚类分析可分为16个PFGE谱型(A-P), 其中优势带型为P型(n=9)。相同荚膜多糖血清型—MLST分型菌株在PFGE带型中呈现高度聚集。CPS分型与MLST分型、PFGE分型有很好的相关性, 而CPS型、STs序列型、PFGE带型与宿主的来源没有明显的相关性。不同鱼源S. agalactiae分子特征的相似性, 提示其存在交叉感染的可能性, 而齐口裂腹鱼源S. agalactiae分子特征的多样性, 提示其存在遗传变异的情况。  相似文献   

17.
Chronic respiratory infection by Pseudomonas aeruginosa is a major cause of mortality in cystic fibrosis (CF). We investigated the interplay between three key microbiological aspects of these infections: the occurrence of transmissible and persistent strains, the emergence of variants with enhanced mutation rates (mutators) and the evolution of antibiotic resistance. For this purpose, 10 sequential isolates, covering up to an 8-year period, from each of 10 CF patients were studied. As anticipated, resistance significantly accumulated overtime, and occurred more frequently among mutator variants detected in 6 of the patients. Nevertheless, highest resistance was documented for the nonmutator CF epidemic strain LES-1 (ST-146) detected for the first time in Spain. A correlation between resistance profiles and resistance mechanisms evaluated [efflux pump (mexB, mexD, mexF, and mexY) and ampC overexpression and OprD production] was not always obvious and hypersusceptibility to certain antibiotics (such as aztreonam or meropenem) was frequently observed. The analysis of whole genome macrorestriction fragments through Pulsed-Field Gel Electrophoresis (PFGE) revealed that a single genotype (clone FQSE-A) produced persistent infections in 4 of the patients. Multilocus Sequence typing (MLST) identified clone FQSE-A as the CF epidemic clone ST-274, but striking discrepancies between PFGE and MLST profiles were evidenced. While PFGE macrorestriction patterns remained stable, a new sequence type (ST-1089) was detected in two of the patients, differing from ST-274 by only two point mutations in two of the genes, each leading to a nonpreviously described allele. Moreover, detailed genetic analyses revealed that the new ST-1089 is a mutS deficient mutator lineage that evolved from the epidemic strain ST-274, acquired specific resistance mechanisms, and underwent further interpatient spread. Thus, presented results provide the first evidence of interpatient dissemination of mutator lineages and denote their potential for unexpected short-term sequence type evolution, illustrating the complexity of P. aeruginosa population biology in CF.  相似文献   

18.

Background

While Group B Streptococcus (GBS) human colonization and infection has long been suspected as originating from cows, several investigators have suggested that ongoing interspecies GBS transmission is unlikely due to genotyping data demonstrating that human and bovine-derived GBS strains represent mostly distinct populations. The possibility of ongoing transmission between humans and their livestock has not been systematically examined.

Methodology/Principal Findings

To examine ongoing interspecies transmission, we conducted a prospective cross-sectional cohort study of 68 families and their livestock. Stool specimens were collected from 154 people and 115 livestock; GBS was detected in 19 (12.3%) humans and 2 (1.7%) animals (bovine and sheep). Application of multilocus sequence typing (MLST) identified 8 sequence types (STs or clones), with STs 1 and 23 predominating. There were 11 families in which two members submitted stools and at least one had GBS colonization. In 3 of these families, both members (consisting of couples) were colonized, yielding a co-colonization rate of 27% (95% CI: 7%–61%). Two of these couples had strains with identical MLST, capsule (cps) genotype, susceptibility, and RAPD profiles. One couple co-colonized with ST-1 (cps5) strains also had a bovine colonized with the identical strain type. On multivariate analysis of questionnaire data, cattle exposure was a predictor of GBS colonization, with each unit increase in days of cattle exposure increasing the odds of colonization by 20% (P = 0.02). These results support interspecies transmission with additional evidence for transmission provided by the epidemiological association with cattle exposure.

Conclusions/Significance

Although GBS uncommonly colonizes livestock stools, increased frequency of cattle exposure was significantly associated with human colonization and one couple shared the same GBS strains as their bovine suggesting intraspecies transmission. These results set the framework for GBS as a possible zoonotic infection, which has significant public health implications.  相似文献   

19.
目的:了解及比较两组毒力差异明显的新生隐球菌格鲁比变种的多位点序列分型(MLST)的特点并进行交配型鉴定。方法采用多位点序列分型(MLST)的方法,设计7个看家基因(CAP59,GPD1,LAC1,PLB1,SOD1,URA5和IGS1)的引物,扩增并分析来源分别为环境和临床的各10株新生隐球菌格鲁比变种的基因型,并鉴定实验菌株交配型,与多位点微卫星分型(MLMT)结果对比,比较不同基因分型方法在分类中的稳定性和可靠性。结果在微卫星分型中为MLMT-36的10株环境分离株,MLST分型为ST-15,而在微卫星分型中为MLMT-13型的10株临床分离株,MLST分型为ST-32,所有菌株交配型均为MAT-α。结论MLST分型结果与MLMT分型结果高度一致,提示以上两种分子分型技术在真菌分类鉴定研究中可显示对于其分离背景及进化来源的高分辨率及稳定性。  相似文献   

20.
为探讨广西南宁地区新生儿及产妇感染的单核细胞增生李斯特菌(Listeria monocytogenes, Lm)的血清型、药物敏感性及其分子流行病学特征,本研究回顾性收集2015-2017年广西壮族自治区妇幼保健院新生儿科及产科送检标本中分离的Lm,对其进行体外药物敏感性检测、血清学分型以及多位点序列分型(multilocus sequence typing, MLST)分析菌株间的同源性;同时分析患儿及其母亲的临床特征及危险因素。结果显示,广西南宁地区新生儿感染Lm发病率较低,2015-2017年发病率为0.091‰;所有分离的Lm分属4b(83.3%)和1/2a(16.7%)2个血清型;药物敏感性试验结果显示,Lm对青霉素、氨苄西林、复方新诺明及美罗培南均100%敏感,暂未发现耐药菌株;MLST分型共获得2个序列型(sequence types,ST),以ST­1型(83.3%)为主。其中分离自同一新生儿患者(Case 2)外周血(Lm2)、耳拭子(Lm3)及其母亲羊水(Lm4)、宫颈分泌物(Lm5)的4株菌具有相同的血清型、药物敏感性表型以及MLST分型。感染Lm的患儿主要表现为发热、肺炎、发绀、败血症及脑膜炎;而产妇感染则具有非特异性的临床特征。结果提示,广西南宁地区存在的Lm菌株为致病性较强的4b、1/2a血清型菌株;Lm可通过母婴垂直传播引起新生儿感染。因此,临床医师应重视孕产妇及新生儿Lm病原学检查、早期诊断和及时合理地使用抗生素预防、治疗,从而减少Lm引起的母婴感染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号