首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken microsatellite primers are not efficient markers for Japanese quail   总被引:5,自引:0,他引:5  
Domestic fowl or chicken (Gallus gallus) and Japanese quail (Coturnix japonica) belong to the family Phasianidae. The exchange of marker information between chicken and quail is an important step towards the construction of a high-resolution comparative genetic map in Phasianidae, which includes several poultry species of agricultural importance. We tested chicken microsatellite markers to see if they would be suitable as genetic linkage markers in Japanese quail. Twenty-six per cent (31/120) of chicken primers amplified individual loci in Japanese quail and 65% (20/31) of the amplified loci were found to be polymorphic. Eleven of the polymorphic loci were excluded as uninformative because of the lack of amplification in some individuals or high frequency of nonspecific amplification. The sequence information of the remaining nine loci revealed six of them to contain microsatellites that were nearly identical with those of the orthologous regions in chicken. For these six loci, allele frequencies were estimated in 50 unrelated quails. Although the very few chicken markers that do work well in quail could be used as anchor points for a comparative mapping, most chicken markers are not useful for studies in quail. Therefore, more effort should be committed to developing quail-specific markers rather than attempting to adapt chicken markers for work in quail.  相似文献   

2.
Fifty microsatellite markers for Japanese quail   总被引:2,自引:0,他引:2  
A Japanese quail genomic library enriched for (CA/GT)n simple sequence repeats was screened and positive clones were sequenced. Fifty original microsatellite sequences were isolated that consisted mainly of perfect repeats of the dinucleotide (CA/GT)n motif and a corresponding number of polymerase chain reaction (PCR) primer pairs complementary to unique DNA sequences flanking the microsatellite repeats were designed to detect the repeats. Forty-six percent (23 of 50) of the markers revealed polymorphism in two unrelated quail individuals (one male and one female) randomly sampled from a population of wild quail origin. All 50 primer pairs were tested in the PCR for their ability to amplify chicken genomic DNA. Amplification products were obtained for 14 (28.0%) of the markers at the annealing temperature optimized for quail. These results provide an opportunity to begin characterizing the quail genome for the development of a genetic map for this economically valuable species and the eventual construction of a comparative genetic map in Phasianidae, which comprises a number of agriculturally important species of poultry.  相似文献   

3.
Japanese quail microsatellite loci amplified with chicken-specific primers   总被引:9,自引:0,他引:9  
Forty-eight primer pairs for chicken (Gallus gallus) microsatellite loci were tested in polymerase chain reaction (PCR) amplification of Japanese quail (Coturnix japonica) genomic DNA. Amplification products were obtained from 28 primer-pairs (58.3%) after optimizing the PCR conditions. Eleven (22.9%) of these generated specific products and 17 yielded non-specific amplification products. Eight markers (ADL0037, ADL0038, ADL0142, ADL0143, ADL0206, ADL0315, ADL0366, and HUJ0006) were polymorphic and three were monomorphic (ADL0023, ADL0024, and ADL0257) in four Japanese quail populations. Specific amplification products from each of the 11 PCR primers were sequenced. Seven of the eight polymorphic and one of three monomorphic markers contained simple tandem repeats. Six of these microsatellite loci (ADL0037, ADL0315, ADL0142, ADL0143, ADL0366 and ADL0257) may be homologous to the corresponding chicken loci from which the markers were developed.  相似文献   

4.
A linkage map of the Japanese quail (Coturnix japonica) genome was constructed based upon segregation analysis of 72 microsatellite loci in 433 F(2) progeny of 10 half-sib families obtained from a cross between two quail lines of different genetic origins. One line was selected for long duration of tonic immobility, a behavioural trait related to fearfulness, while the other was selected based on early egg production. Fifty-eight of the markers were resolved into 12 autosomal linkage groups and a Z chromosome-specific linkage group, while the remaining 14 markers were unlinked. The linkage groups range from 8 cM (two markers) to 206 cM (16 markers) and cover a total map distance of 576 cM with an average spacing of 10 cM between loci. Through comparative mapping with chicken (Gallus gallus) using orthologous markers, we were able to assign linkage groups CJA01, CJA02, CJA05, CJA06, CJA14 and CJA27 to chromosomes. This map, which is the first in quail based solely on microsatellites, is a major step towards the development of a quality molecular genetic map for this valuable species. It will provide an important framework for further genetic mapping and the identification of quantitative trait loci controlling egg production and fear-related behavioural traits in quail.  相似文献   

5.
Comparative analysis of microsatellite loci in chicken and turkey.   总被引:4,自引:0,他引:4  
K M Reed  K M Mendoza  C W Beattie 《Génome》2000,43(5):796-802
Cross-species amplification of 520 chicken microsatellite markers was tested by polymerase chain reaction with genomic DNA of the turkey (Meleagris gallopavo). Each primer pair was tested at six different combinations of annealing temperature and MgCl2 concentration. A total of 280 (54%) of the primer pairs produced amplification products. The majority of these products were similar, if not identical in size to those expected based on the fragment sizes of the corresponding chicken loci. Structure of the dinucleotide repeat and flanking sequences was examined for 13 turkey fragments (amplified with chicken primers) and 5 chicken fragments (amplified with turkey primers). Sequence analysis found a wide array of mutations between species in addition to differences in repeat length. To estimate the usefulness of the amplified loci for genetic mapping in the turkey, allelic polymorphism was determined for 57 of the 280 amplified loci. A total of 20 of 57 markers (35%) were polymorphic with an average of 1.4 alleles per locus. The results of this study suggest that approximately 20% of the chicken microsatellite markers will be useful for mapping the turkey genome.  相似文献   

6.
Using standard phylogenetic methods, it can be hard to resolve the order in which speciation events took place when new lineages evolved in the distant past and within a short time frame. As an example, phylogenies of galliform birds (including well-known species such as chicken, turkey, and quail) usually show low bootstrap support values at short internal branches, reflecting the rapid diversification of these birds in the Eocene. However, given the key role of chicken and related poultry species in agricultural, evolutionary, general biological and disease studies, it is important to know their internal relationships. Recently, insertion patterns of transposable elements such as long and short interspersed nuclear element markers have proved powerful in revealing branching orders of difficult phylogenies. Here we decipher the order of speciation events in a group of 27 galliform species based on insertion events of chicken repeat 1 (CR1) transposable elements. Forty-four CR1 marker loci were identified from the draft sequence of the chicken genome, and from turkey BAC clone sequence, and the presence or absence of markers across species was investigated via electrophoretic size separation of amplification products and subsequent confirmation by DNA sequencing. Thirty markers proved possible to type with electrophoresis of which 20 were phylogenetically informative. The distribution of these repeat elements supported a single homoplasy-free cladogram, which confirmed that megapodes, cracids, New World quail, and guinea fowl form outgroups to Phasianidae and that quails, pheasants, and partridges are each polyphyletic groups. Importantly, we show that chicken is an outgroup to turkey and quail, an observation which does not have significant support from previous DNA sequence- and DNA-DNA hybridization-based trees and has important implications for evolutionary studies based on sequence or karyotype data from galliforms. We discuss the potential and limitations of using a genome-based retrotransposon approach in resolving problematic phylogenies among birds.  相似文献   

7.
Microsatellite loci for the buff-throated partridge (Tetraophasis szechenyii), an endemic pheasant species of China, are here described for the first time. Twenty-five microsatellite markers from chicken and Japanese quail were tested on buff-throated partridge DNA by means of cross-amplification. Twenty (80%) primers yielded specific products and polymorphisms were tested in a wild population of buff-throated partridge. Twelve (48%) proved to be polymorphic with an average of two alleles per locus. Current results of buff-throated partridge microsatellites loci could be employed in population genetic studies and on other endangered pheasant species.  相似文献   

8.
Coturnix chinensis (blue-breasted quail) has been classically grouped in Galliformes Phasianidae Coturnix, based on morphologic features and biochemical evidence. Since the blue-breasted quail has the smallest body size among the species of Galliformes, in addition to a short generation time and an excellent reproductive performance, it is a possible model fowl for breeding and physiological studies of the Coturnix japonica (Japanese quail) and Gallus gallus domesticus (chicken), which are classified in the same family as blue-breasted quail. However, since its phylogenetic position in the family Phasianidae has not been determined conclusively, the sequence of the entire blue-breasted quail mitochondria (mt) genome was obtained to provide genetic information for phylogenetic analysis in the present study. The blue-breasted quail mtDNA was found to be a circular DNA of 16,687 base pairs (bp) with the same genomic structure as the mtDNAs of Japanese quail and chicken, though it is smaller than Japanese quail and chicken mtDNAs by 10 bp and 88 bp, respectively. The sequence identity of all mitochondrial genes, including those for 12S and 16S ribosomal RNAs, between blue-breasted quail and Japanese quail ranged from 84.5% to 93.5%; between blue-breasted quail and chicken, sequence identity ranged from 78.0% to 89.6%. In order to obtain information on the phylogenetic position of blue-breasted quail in Galliformes Phasianidae, the 2,184 bp sequence comprising NADH dehydrogenase subunit 2 and cytochrome b genes available for eight species in Galliformes [Japanese quail, chicken, Gallus varius (green junglefowl), Bambusicola thoracica (Chinese bamboo partridge), Pavo cristatus (Indian peafowl), Perdix perdix (gray partridge), Phasianus colchicus (ring-neck pheasant), and Tympanchus phasianellus (sharp-tailed grouse)] together with that of Aythya americana (redhead) were examined using a maximum likelihood (ML) method. The ML analyses on the first/second codon positions, the third codon positions, and amino acid sequence consistently demonstrated that blue-breasted quail and Japanese quail are in the same phylogenetic cluster.  相似文献   

9.
Chromosome homology between chicken (Gallus gallus) and guinea fowl (Numida meleagris) was investigated by comparative chromosome painting with chicken whole chromosome paints for chromosomes 1-9 and Z and by comparative mapping of 38 macrochromosome-specific (chromosomes 1-8 and Z) and 30 microchromosome-specific chicken cosmid DNA clones. The comparative chromosome analysis revealed that the homology of macrochromosomes is highly conserved between the two species except for two inter-chromosomal rearrangements. Guinea fowl chromosome 4 represented the centric fusion of chicken chromosome 9 with the q arm of chicken chromosome 4. Guinea fowl chromosome 5 resulted from the fusion of chicken chromosomes 6 and 7. A pericentric inversion was found in guinea fowl chromosome 7, which corresponded to chicken chromosome 8. All the chicken microchromosome-specific DNA clones were also localized to microchromosomes of guinea fowl except for several clones localized to the short arm of chromosome 4. These results suggest that the cytogenetic genome organization is highly conserved between chicken and guinea fowl.  相似文献   

10.
Molecular genetic maps can provide information for the identification and localization of major genes associated with quantitative traits. However, there are currently no published genetic linkage maps for any ratites. Herein, a preliminary genetic map of ostrich was developed using a two-generation ostrich reference family by linkage analysis of 104 polymorphic microsatellite markers, including 40 novel markers reported in this study. A total of 35 microsatellite markers were placed into 13 linkage groups. Five linkage groups are composed of three or more loci, whereas the remaining eight groups each contained two markers. The sex-averaged map spans 365.4 cM. The marker interval of each linkage group ranges from 5.3 to 25.4 cM, and the average interval distance is 16.61 cM. The male map covers 342.7 cM, with an average intermarker distance of 15.58 cM, whereas the female map is 456.7 cM, with the average intermarker spacing of 20.76 cM. In order to screen the orthologous loci between ostrich and chicken, all of the flanking sequences of the 104 polymorphic loci, nine monomorphic loci and a further 12 reported microsatellite loci for ostrich were screened against the chicken genomic sequence using the BLAST algorithm (Altschul et al., 1990), and corresponding orthologs were found for 13 sequences. The microsatellite loci and genetic map developed in this study will be useful for QTL mapping, population genetics and phylogenetic studies in the ratite. In addition, the 13 orthologous loci identified in this study will be advantageous to the construction of a comparative genetic map between chicken and ostrich.  相似文献   

11.
目的筛选豚鼠基因组的多态性微卫星标记,为豚鼠遗传质量控制及基因定位等工作奠定基础。方法采用磁珠富集法和豚鼠基因组数据库筛选法获取微卫星位点序列,通过分析和初步筛选,挑选部分候选位点,根据其序列设计引物,对5种不同来源的豚鼠基因组DNA标本进行PCR扩增,以期获得多态性分子标记。结果本实验采用磁珠富集法共获得微卫星序列304个,设计引物125对,最终获得多态性位点1个,暂未发现多态性的特异性位点17个;用数据库筛选法共获得微卫星序列292个,设计并合成相应引物178对,最终发现多态性位点25个,暂未发现多态性的特异性位点28个。结论本实验获得26个多态性微卫星标记,45个潜在的候选标记,为微卫星标记在豚鼠遗传质量监测及突变基因定位等工作的应用奠定了基础。  相似文献   

12.
To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented.  相似文献   

13.
Use of chicken microsatellite markers in turkey: a pessimistic view   总被引:3,自引:0,他引:3  
Eighty-eight chicken microsatellite markers, previously developed in our laboratory, were tested for their ability to amplify polymorphic fragments using turkey genomic DNA. Amplification products were obtained for 61 chicken microsatellite markers (69.1%) whereas 27 (30.9%) did not give rise to any products, even when different polymerase chain reaction conditions were employed. From the 61 markers that gave a product, only eight showed a length polymorphism while 37 were monomorphic on the three divergent commercial turkey lines used. The remaining 16 markers yielded many unspecific bands and no specific amplification product could be obtained. Five polymorphic and eleven monomorphic products contained a detectable microsatellite repeat. Furthermore, of the markers that detected a polymorphism in turkey, the observed heterozygosity (15–50%) and allelic variation (only 2 in most cases) was very low. Therefore, on the basis of our results, we think that chicken microsatellite markers are not very useful for mapping purposes in turkey.  相似文献   

14.
The objective of this work was to map classical markers (plumage colours and blood proteins) on the microsatellite linkage map of the Japanese quail (Coturnix japonica). The segregation data on two plumage colours and three blood proteins were obtained from 25 three-generation families (193 F2 birds). Linkage analysis was carried out for these five classical markers and 80 microsatellite markers. A total of 15 linkage groups that included the five classical loci and 69 of the 80 microsatellite markers were constructed. Using the BLAST homology search against the chicken genome sequence, three quail linkage groups, QL8, QL10 and QL13, were suggested to be homologous to chicken chromosomes GGA9, GGA20 and GGA24, respectively. Two plumage colour loci, black at hatch (Bh) and yellow (Y), and the three blood protein loci, transferrin (Tf), haemoglobin (Hb-1) and prealbumin-1 (Pa-1), were assigned to CJA01, QL10, QL8, CJA14 and QL13, respectively.  相似文献   

15.
Short of a complete genomic DNA sequence, sequence tagged sites (STSs) have emerged as major genomic reagents for the genetic analysis of little-studied ecologically and agriculturally important organisms. Here, we report STS developed for the turkey (Meleagris gallopavo), guinea fowl (Numidea meleagris), Japanese quail (Coturnix coturnix) and pigeon using primers specific for reference DNA sequences of two chicken (Gallus gallus) genes, aggrecan (agc1) and type X collagen (col10). Additional STSs were also developed for turkey, quail and chicken using primers specific for the human apobec-1 gene. The total length of the STSs developed was 5990, 2522, 4127, 1539 and 6600 bp for the turkey, guinea fowl, Japanese quail, pigeon and chicken, respectively. Based on splice site consensus GT and AG sequences, four of the seven agc1-based chicken STS appear to contain introns. The human gene-based STSs showed no significant sequence identity with the reference GenBank sequences. Maximum likelihood, maximum parsimony and neighbour-joining analysis of an agc1-based STS that was common to all five species showed phylogenetic relationships consistent with those previously defined using mitochondria DNA sequences and nuclear gene restriction maps. Additionally, several putative single nucleotide polymorphisms (SNPs) were detected within the STSs, including eight in the turkey, two in the quail, and two in the chicken when multiple sequences were evaluated from each species. This report describes new STSs that are resources for genetic and physical mapping and genome analysis within and among avian species. These resources should further aid in our understanding of the biology of agriculturally important but little-studied guinea fowl and turkey. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The Japanese quail (Coturnix japonica) is a notably valuable egg and meat producer but has also been used as a laboratory animal. In the present study, we constructed a Japanese quail linkage map with 1735 polymorphic amplified fragment length polymorphisms markers, and nine chicken microsatellite (MS) markers, as well as sex and phenotypes of two genetic diseases; a muscular disorder (LWC) and neurofilament-deficient mutant (Quv). Linkage analysis revealed 578 independent loci. The resulting linkage map contained 44 multipoint linkage groups covering 2597.8 cM and an additional 218.2 cM was contained in 21 two-point linkage groups. The total map was 2816 cM in length with an average marker interval of 5.5 cM. The Quv locus was located on linkage group 5, but linkage was not found between the LWC locus and any of the markers. Comparative mapping with chicken using orthologous markers revealed chromosomal assignments of the quail linkage group 1 to chicken chromosome 2 (GGA2), 5 to GGA22, 2 to GGA5, 8 to GGA7, 27 to GGA11, 29 to GGA1 and 45 to GGA4.  相似文献   

17.
In order to develop a comparative map between chicken and quail, we identified orthologous gene markers based on chicken genomic sequences and localized them on the Japanese quail Kobe-NIBS linkage map, which had previously been constructed with amplified fragment length polymorphisms. After sequencing the intronic regions of 168 genes located on chicken chromosomes 1-8, polymorphisms among Kobe-NIBS quail family parents were detected in 51 genes. These orthologous markers were mapped on eight Japanese quail linkage groups (JQG), and they allowed the comparison of JQG to chicken macrochromosomes. The locations of the genes and their orders were quite similar between the two species except within a previously reported inversion on quail chromosome 2. Therefore, we propose that the respective quail linkage groups are macrochromosomes and designated as quail chromosomes CJA 1-8.  相似文献   

18.
The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 TaqI/EcoRI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.  相似文献   

19.
In turkeys, spontaneous cardiomyopathy or round heart (RH) disease is characterised by dilated ventricles and cardiac muscle hypertrophy. Although the aetiology of RH is still unknown, the disease can have a significant economic impact on turkey producers. In an initial attempt to identify genomic regions associated with RH, we utilised the chicken genome sequence to target short DNA sequences (sequence-characterised amplified regions, SCARs) identified in previous studies that had significant differences in frequency distribution between RH+ and RH- turkeys. SCARs were comparatively aligned with the chicken whole-genome sequence to identify flanking regions for primer design. Primers from 32 alignments were tested and target sequences were successfully amplified for 30 loci (94%). Comparative re-sequencing identified putative SNPs in 20 of the 30 loci (67%). Genetically informative SNPs at 16 loci were genotyped in the UMN/NTBF turkey mapping population. As a result of this study, 34 markers were placed on the turkey/chicken comparative map and 15 markers were added to the turkey genetic linkage map. The position of these markers relative to cardiac-related genes is presented. In addition, analysis of genotypes at 109 microsatellite loci presumed to flank the SCAR sequences in the turkey genome identified four significant associations with RH.  相似文献   

20.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1-8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号