首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic determinants responsible for the resistances against the antibiotics tetracycline [tet(M), tet(O), tet(S), tet(K) and tet(L)], erythromycin (ermA,B,C; mefA,E; msrA/B; and ereA,B) and chloramphenicol (cat) of 38 antibiotic-resistant Enterococcus faecium and Enterococcus faecalis strains from food were characterised. In addition, the transferability of resistance genes was also assessed using filter mating assays. The tet(L) determinant was the most commonly detected among tetracycline-resistant enterococci (94% of the strains), followed by the tet(M) gene, which occurred in 63.0% of the strains. Tet(K) occurred in 56.0% of the resistant strains, while genes for tet(O) and tet(S) could not be detected. The integrase gene of the Tn916-1545 family of transposons was present in 81.3% of the tetracycline resistant strains, indicating that resistance genes might be transferable by transposons. All chloramphenicol-resistant strains carried a cat gene. 81.8% of the erythromycin-resistant strains carried the ermB gene. Two (9.5%) of the 21 erythromycin-resistant strains, which did not contain ermA,B,C, ereA,B and mphA genes harboured the msrC gene encoding an erythromycin efflux pump, which was confirmed by sequencing the PCR amplicon. In addition, all E. faecium strains contained the msrC gene, but none of the E. faecalis strains. Transfer of the genetic determinants for antibiotic resistance could only be demonstrated in one filter mating experiment, where both the tet(M) and tet(L) genes were transferred from E. faecalis FAIR-E 315 to the E. faecalis OG1X recipient strain. Our results show the presence of various types of resistance genes as well as transposon integrase genes associated with transferable resistances in enterococci, indicating a potential for gene transfer in the food environment.  相似文献   

2.
It has been shown that the mercury in dental amalgam and other environmental sources can select for mercury resistant bacteria and that this can lead to an increase in resistance to antibiotics. To understand more about this linkage we have investigated the genetic basis for mercury and antibiotic resistance in a variety of oral bacteria. In this study we have cloned and sequenced the mer operon from an Enterococcus faecium strain which was resistant to mercury, tetracycline, and streptomycin. This strain was isolated, in a previous investigation, from a cynomolgus monkey post-installation of amalgam fillings. The mer operon was contained within a putative transposon (Tnmer1) of the ISL3 family. This element was located on a streptomycin resistant plasmid, pPPM1000, which shares homology with pRE25.  相似文献   

3.
We describe Tn5386, a novel ca.-29-kb Tn916-like mobile element discovered to occur in ampicillin-resistant, Tn916-containing Enterococcus faecium D344R. PCR amplification experiments after overnight growth with or without tetracycline revealed "joint" regions of circularized Tn5386 composed of 6-bp sequences linking different transposon termini. In one case (no tetracycline), the termini were consistent with those derived by target site analysis of the integrated element. In the other case, the termini were virtually identical in distance from the integrase binding regions, as seen with Tn916. These data are consistent with a model in which one PCR product results from the action of Tn5386 integrase, whereas the other results from the action of the Tn916 integrase on Tn5386. Spontaneous conversion of D344R to an ampicillin-susceptible phenotype (D344SRF) was associated with a 178-kb deletion extending from the left end of Tn5386 to the left end of Tn916. Examination of the Tn5386 junction after the large deletion event suggests that the deletion resulted from an interaction between the nonintegrase ends of Tn5386 and Tn916. The terminus of Tn5386 identified in this reaction suggested that it may have resulted from the activity of the Tn916 integrase (Int(Tn916)). The "joint" of the circular element resulting from this excision was amplifiable from D344R, the sequence of which revealed a heteroduplex consistent with Int(Tn916)-mediated excision. In contrast, Tn5386 joints amplified from ampicillin-susceptible D344SRF revealed ends consistent with Tn5386 integrase activity, reflecting the absence of Tn916 from this strain. Tn5386 represents a new member of the Tn916 transposon family. Our data suggest that excision of Tn5386 can be catalyzed by the Tn916 integrase and that large genomic deletions may result from the interaction between these heterologous elements.  相似文献   

4.
This study compared virulence and antibiotic resistance traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E, esp and acm were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.8% of E. faecalis and 70.4% of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linezolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.2% of E. faecalis and 70.3% of E. faecium) compared to water isolates (only 5.7% E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk.  相似文献   

5.
Vancomycin-resistant enterococci represent a large reservoir in animals because of the use of avoparcin as a growth promoter in Europe. These strains of animal origin enter the food chain and can either colonize the human gut or transfer their resistance genes to the human microbiota. In this study, we compared the transfer of vancomycin resistance from resistant animal Enterococcus faecium to sensitive human Enterococcus faecalis and E. faecium. We analysed these transfers in dibiotic mice and human faecal flora-associated mice. VanA transfer from animal E. faecium to human E. faecalis occurred in dibiotic mice. The transconjugants appeared rapidly and persisted at levels between 3.0 and 4.0 log10 colony-forming units g(-1) of faeces. In human faecal flora-associated mice, vanA gene transfer was not detected towards E. faecalis but was possible between E. faecium strains. Our experiments revealed the possibility of vanA transfer from animal E. faecium to human E. faecalis in vitro and in vivo in the intestine of dibiotic mice. However, intraspecies transfer of vanA gene seems more common than interspecies transfer among enterococci.  相似文献   

6.
Drug resistance and the transferability of resistance were examined in 218 Enterococcus faecium clinical isolates obtained from in-patients of a Japanese university hospital between 1990 and 1999. One hundred and sixty one isolates (73.9%) were drug-resistant and 127 (58.2%) isolates were resistant to two or more drugs. Vancomycin resistant E. faecium (VRE) was not isolated. The transferability of drug-resistance to an E. faecium strain was examined by broth or filter mating. Six (12.5%) of the 48 gentamicin resistance traits, and fifty (50%) of the 101 erythromycin resistance traits were transferred by filter mating. The gentamicin resistance traits of five isolates and the erythromycin resistance traits of four isolates were transferred to the recipient strains by both broth mating and filter mating at a frequency of about 10(-6) and 10(-5) per donor cell, respectively. The five gentamicin resistant strains were shown to harbor pMG1-like plasmids on the basis of their Southern hybridization with pMG1 (65.1 kbp, Gm(r)), which transfers efficiently between enterococci by broth mating. Each of the four erythromycin resistant transconjugants obtained by broth mating harbored a large conjugative plasmid (more than 100 kbp). The plasmids showed no homology with well-characterized enterococcal conjugative plasmids such as pAD1, pPD1, pAM(beta)1, pIP501 and pMG1 by Southern hybridization. Of the erythromycin resistance traits that transferred only by filter mating, it was found that the erythromycin resistance trait was conferred by a 47-kbp transposable element that transferred from the chromosome of the donor strain to different sites within the pheromone responsive plasmid pAD1 (60 kbp) of the recipient strain, suggesting that the erythromycin resistance trait was encoded on a conjugative transposon, which was named Tn950.  相似文献   

7.
Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM), leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism.  相似文献   

8.
The aim of this study was to evaluate the drug susceptibility of 100 Enterococcus spp. strains isolated from patients hospitalized in State Clinical Hospital No 1 in Warsaw. All strains were identified (API 20 STREP) and their susceptibility to antibiotics was tested (ATB STREP) in automatic ATB system. Additionally, PYRase activity, beta-lactamase production (in nitrocefin test), MICs for vancomycin and teicoplanin (E test), HLAR--high level aminoglycoside resistance and susceptibility to vancomycin, teicoplanin, piperacillin and piperacillin/tazobactam (disc diffusion method) were determined. E. faecalis ATCC 29212 was used as the control strain. Fifty E. faecalis, 45 E. faecium, 2 E. casseliflavus, 2 E. durans and 1 E. avium strain were cultured. All strains were PYRase-positive and beta-lactamase-negative. Ten isolates demonstrated intermediate susceptibility to vancomycin (6--E. faecalis and 4--E. faecium). One E. faecalis strain was intermediately susceptible to both glycopeptides. One E. casseliflavus strain showed low-level resistance to vancomycin, but this strain was susceptible to teicoplanin--phenotype Van C. HLAR strains were found among 31 E. faecalis and 40 E. faecium strains. 48 E. faecalis strains were susceptible to piperacillin and 49 to piperacillin/tazobactam. Whereas, 41 E. faecium were resistant to both these drugs. Thirty six per cent of isolates were resistant to penicillin and ampicillin, 73% to erythromycin, 87% to tetracycline, 89% to lincomycin and 56% to nitrofurantoin. Some discrepancies were noticed between the results of different methods applied for susceptibility testing--ATB system, E test and disc diffusion. These discrepancies concerned HLAR detection and susceptibility to glycopeptides determination. The best methods were: disc-diffusion for HLAR detection and E test for determination of resistance to vancomycin and teicoplanin. Increasing resistance to antimicrobial agents is observed in clinical Enterococcus spp. isolates cultured in our laboratory, especially in E. faecium strains. It is necessary to control the dissemination of multiresistant Enterococcus spp. strains in hospital wards.  相似文献   

9.
The purpose of this study was to characterize the antibiotic resistance profiles of Enterococcus species isolated from fresh produce harvested in the southwestern United States. Among the 185 Enterococcus isolates obtained, 97 (52%) were Enterococcus faecium, 38 (21%) were Enterococcus faecalis, and 50 (27%) were other Enterococcus species. Of human clinical importance, E. faecium strains had a much higher prevalence of resistance to ciprofloxacin, tetracycline, and nitrofurantoin than E. faecalis. E. faecalis strains had a low prevalence of resistance to antibiotics used to treat E. faecalis infections of both clinical and of agricultural relevance, excluding its intrinsic resistance patterns. Thirty-four percent of the isolates had multiple-drug-resistance patterns, excluding intrinsic resistance. Data on the prevalence and types of antibiotic resistance in Enterococcus species isolated from fresh produce may be used to describe baseline antibiotic susceptibility profiles associated with Enterococcus spp. isolated from the environment. The data collected may also help elucidate the role of foods in the transmission of antibiotic-resistant strains to human populations.  相似文献   

10.
In this project, enterococci from the digestive tracts of 260 houseflies (Musca domestica L.) collected from five restaurants were characterized. Houseflies frequently (97% of the flies were positive) carried enterococci (mean, 3.1 x 10(3) CFU/fly). Using multiplex PCR, 205 of 355 randomly selected enterococcal isolates were identified and characterized. The majority of these isolates were Enterococcus faecalis (88.2%); in addition, 6.8% were E. faecium, and 4.9% were E. casseliflavus. E. faecalis isolates were phenotypically resistant to tetracycline (66.3%), erythromycin (23.8%), streptomycin (11.6%), ciprofloxacin (9.9%), and kanamycin (8.3%). Tetracycline resistance in E. faecalis was encoded by tet(M) (65.8%), tet(O) (1.7%), and tet(W) (0.8%). The majority (78.3%) of the erythromycin-resistant E. faecalis isolates carried erm(B). The conjugative transposon Tn916 and members of the Tn916/Tn1545 family were detected in 30.2% and 34.6% of the identified isolates, respectively. E. faecalis carried virulence genes, including a gelatinase gene (gelE; 70.7%), an aggregation substance gene (asa1; 33.2%), an enterococcus surface protein gene (esp; 8.8%), and a cytolysin gene (cylA; 8.8%). Phenotypic assays showed that 91.4% of the isolates with the gelE gene were gelatinolytic and that 46.7% of the isolates with the asa1 gene aggregated. All isolates with the cylA gene were hemolytic on human blood. This study showed that houseflies in food-handling and -serving facilities carry antibiotic-resistant and potentially virulent enterococci that have the capacity for horizontal transfer of antibiotic resistance genes to other bacteria.  相似文献   

11.
Mechanisms for the intercellular transfer of VanB-type vancomycin resistance determinants and for the almost universal association of these determinants with those for high-level ampicillin resistance remain poorly defined. We report the discovery of Tn5382, a ca. 27-kb putative transposon encoding VanB-type glycopeptide resistance in Enterococcus faecium. Open reading frames internal to the right end of Tn5382 and downstream of the vanXB dipeptidase gene exhibit significant homology to genes encoding the excisase and integrase of conjugative transposon Tn916. The ends of Tn5382 are also homologous to the ends of Tn916, especially in regions bound by the integrase enzyme. PCR amplification experiments indicate that Tn5382 excises to form a circular intermediate in E. faecium. Integration of Tn5382 in the chromosome of E. faecium C68 has occurred 113 bp downstream of the stop codon for the pbp5 gene, which encodes high-level ampicillin resistance in this clinical isolate. Transfer of vancomycin, ampicillin, and tetracycline resistance from C68 to an E. faecium recipient strain occurs at low frequency in vitro and is associated with acquisition of a 130- to 160-kb segment of DNA that contains Tn5382, the pbp5 gene, and its putative repressor gene, psr. The interenterococcal transfer of this large chromosomal element appears to be the primary mechanism for vanB operon spread in northeast Ohio. These results expand the known family of Tn916-related transposons, suggest a mechanism for vanB operon entry into and dissemination among enterococci, and provide an explanation for the nearly universal association of vancomycin and high-level ampicillin resistance in clinical E. faecium strains.  相似文献   

12.
Enterococcus faecium DPC3675 is a derivative of E. faecium DPC1146 which contains a single copy of the conjugative transposon Tn916. Although the transposon is observed to be oriented in one direction in individual colonies, DNA extracted from cultures grown from these colonies contains the transposon in both orientations, as determined by PCR analysis and sequencing of the transposon/chromosome junctions. Therefore, Tn916 possesses a hitherto unreported ability to invert within a particular insertion site during growth in broth.  相似文献   

13.
Vibrio fluvialis strain H-08942 was isolated from an infant aged 6 months who was suffering from cholera-like diarrhea in India. This strain showed the typical multidrug-resistance phenotype of an SXT element. It was resistant to sulfamethoxazole (Su), trimethoprim (Tm), chloramphenicol (Cm) and streptomycin (Sm), in addition to other antibiotics such as ampicillin (Am), furazolidone (Fz), nalidixic acid (Na), and gentamicin (Gm). The SXT element is a Vibrio cholerae-derived integrative and conjugative element (ICE) that has also been referred to as a conjugative transposon. Our goal was to find a relationship between these resistant phenotypes and the presence of the SXT element in this unique strain. By using PCR, we detected the antibiotic resistance genes, the integrase gene and the attP attachment site of SXT element. Cloning and DNA sequencing results showed that both the SXT integrase gene and its attP site of V. fluvialis were similar but not identical to those of V. cholerae. The SXT integrase gene of V. fluvialis has a 99% identity to that of V. cholerae, and the attP site of SXT of V. fluvialis is variant and shorter (641 bp) than that of V. cholerae (785 bp). It was possible for the SXT of V. fluvialis to be transferred by conjugation to a laboratory strain of Escherichia coli. Here, we report the detection of a variant SXT element in species other than V. cholerae, with molecular characterization and analysis of its integrase gene and its attP site.  相似文献   

14.
15.
The potential impact of food animals in the production environment on the bacterial population as a result of antimicrobial drug use for growth enhancement continues to be a cause for concern. Enterococci from 82 farms within a poultry production region on the eastern seaboard were isolated to establish a baseline of susceptibility profiles for a number of antimicrobials used in production as well as clinical environments. Of the 541 isolates recovered, Enterococcus faecalis (53%) and E. faecium (31%) were the predominant species, while multiresistant antimicrobial phenotypes were observed among all species. The prevalence of resistance among isolates of E. faecalis was comparatively higher among lincosamide, macrolide, and tetracycline antimicrobials, while isolates of E. faecium were observed to be more frequently resistant to fluoroquinolones and penicillins. Notably, 63% of the E. faecium isolates were resistant to the streptogramin quinupristin-dalfopristin, while high-level gentamicin resistance was observed only among the E. faecalis population, of which 7% of the isolates were resistant. The primary observations are that enterococci can be frequently isolated from the poultry production environment and can be multiresistant to antimicrobials used in human medicine. The high frequency with which resistant enterococci are isolated from this environment suggests that these organisms might be useful as sentinels to monitor the development of resistance resulting from the usage of antimicrobial agents in animal production.  相似文献   

16.
Ghosh A  Dowd SE  Zurek L 《PloS one》2011,6(7):e22451
The enterococcal community from feces of seven dogs treated with antibiotics for 2-9 days in the veterinary intensive care unit (ICU) was characterized. Both, culture-based approach and culture-independent 16S rDNA amplicon 454 pyrosequencing, revealed an abnormally large enterococcal community: 1.4±0.8×10(8) CFU gram(-1) of feces and 48.9±11.5% of the total 16,228 sequences, respectively. The diversity of the overall microbial community was very low which likely reflects a high selective antibiotic pressure. The enterococcal diversity based on 210 isolates was also low as represented by Enterococcus faecium (54.6%) and Enterococcus faecalis (45.4%). E. faecium was frequently resistant to enrofloxacin (97.3%), ampicillin (96.5%), tetracycline (84.1%), doxycycline (60.2%), erythromycin (53.1%), gentamicin (48.7%), streptomycin (42.5%), and nitrofurantoin (26.5%). In E. faecalis, resistance was common to tetracycline (59.6%), erythromycin (56.4%), doxycycline (53.2%), and enrofloxacin (31.9%). No resistance was detected to vancomycin, tigecycline, linezolid, and quinupristin/dalfopristin in either species. Many isolates carried virulence traits including gelatinase, aggregation substance, cytolysin, and enterococcal surface protein. All E. faecalis strains were biofilm formers in vitro and this phenotype correlated with the presence of gelE and/or esp. In vitro intra-species conjugation assays demonstrated that E. faecium were capable of transferring tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin resistance traits to human clinical strains. Multi-locus variable number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of E. faecium strains showed very low genotypic diversity. Interestingly, three E. faecium clones were shared among four dogs suggesting their nosocomial origin. Furthermore, multi-locus sequence typing (MLST) of nine representative MLVA types revealed that six sequence types (STs) originating from five dogs were identical or closely related to STs of human clinical isolates and isolates from hospital outbreaks. It is recommended to restrict close physical contact between pets released from the ICU and their owners to avoid potential health risks.  相似文献   

17.
Comparative genome analysis of Enterococcus faecium recently revealed that a genomic island containing the esp gene, referred to as the esp-containing pathogenicity island (esp PAI), can be transferred by conjugation and contains a partial Tn916-like element and an integrase gene, intA. Here, we characterize the role of intA in the excision of the esp PAI. An intA insertion-deletion mutant in E. faecium E1162 (E1162ΔintA) was constructed and in trans complemented with wild-type intA (E1162ΔintA::pEF30). Circular intermediates (CI) of excised esp PAI were determined using inverse PCR analysis on purified chromosomal DNA from strains E1162, E1162Δesp, E1162ΔintA, and E1162ΔintA::pEF30. In E1162 and E1162Δesp, CI of the esp PAI were detected. No CI were detected in E1162ΔintA, while in the complemented strain E1162ΔintA::pEF30 CI formation was restored, indicating that intA is essential for excision and subsequent mobilization of the esp-containing genomic island in E. faecium. Based on the fact that this island can be mobilized and is self-transmissible, we propose to change the name of the esp PAI to ICEEfm1.  相似文献   

18.
Sequence determination of the flanking regions of the vancomycin resistance van gene cluster carried by pIP816 in Enterococcus faecium BM4147 revealed similarity to transposons of the Tn3 family. Imperfect inverted repeats (36 of 38 bp) delineated a 10,851-bp element designated Tn1546. The 4-kb region located upstream from the vanR gene contained two open reading frames (ORF) transcribed in opposite directions. The deduced amino acid sequence of ORF1 (988 residues) displayed, respectively, 56 and 42% identity to those of the transposases of Tn4430 from Bacillus thuringiensis and of Tn917 from Enterococcus faecalis. The product of ORF2 (191 residues) was related to the resolvase of Tn917 (33% amino acid identity) and to the Res protein (48%) of plasmid pIP404 from Clostridium perfringens. Tn1546 transposed consecutively in Escherichia coli from plasmid pUC18 into pOX38 and from pOX38 into various sites of pBR329. Transposition was replicative, led to the formation of cointegrates, and produced a 5-bp duplication at the target site. Southern hybridization and DNA amplification revealed the presence of Tn1546-related elements in enterococci highly resistant to glycopeptides. Analysis of sequences surrounding these elements indicated that transposition plays a role in dissemination of the van gene cluster among replicons of human clinical isolates of E. faecium.  相似文献   

19.
目的了解医院屎肠球菌的临床分布和耐药情况,为临床抗感染的预防与治疗提供参考。方法回顾性分析1999年1月至2011年12月临床标本中分离的1161株屎肠球菌;用WHONET5.6软件分析耐药率变迁。结果临床分离的1161株屎肠球菌,在同期分离的1944株肠球菌属中占59.72%。主要分离自尿液和血液,分别占40.91%和26.87%;主要分离自外科病区、内科病区、ICU和儿科病区的菌株,分别占29.37%、25.15%、13.95%和13.53%;屎肠球菌对多种抗菌药物耐药,对万古霉素、替考拉宁和利奈唑胺的耐药率较低,分别为1.04%、0.94%和1.85%。结论屎肠球菌在临床的分离率逐年增加,已成为医院内感染的主要病原菌之一,其多药耐药和高耐药现象相当严重,目前万古霉素、替考拉宁和利奈唑胺仍然是治疗肠球菌属引起感染的有效药物。  相似文献   

20.
A Psychrobacter psychrophilus strain resistant to tetracycline and streptomycin was isolated from a 15 000–35 000-year-old permafrost subsoil sediment sampled from the coast of the Eastern-Siberian Sea. The genes conferring antibiotic resistance were localized on an c . 30-kb pKLH80 plasmid. It was shown that the antibiotic resistance region of this plasmid has a mosaic structure and contains closely linked streptomycin resistance ( strA-strB ) and tetracycline resistance [ tetR-tet (H)] genes, followed by a novel IS element (IS Ppy1 ) belonging to the IS 3 family. Both the strA-strB and tetR-tet (H) genes of pKLH80 were highly similar to those found in modern clinical bacterial isolates. It was shown that the IS Ppy1 element of pKLH80 can direct translocation of the adjacent antibiotic resistance genes to different target plasmids, either by one-ended transposition or by formation of a composite transposon resulting from the insertion of the IS Ppy1 second copy at the other side of the antibiotic resistance region. Thus, our data demonstrate that clinically important antibiotic resistance genes originated long before the introduction of antibiotics into clinical practice and confirm an important role of horizontal gene transfer in the distribution of these genes in natural bacterial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号