首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Ligation of P2X7 receptors with a ‘danger signal’, extracellular ATP (eATP), has recently been shown to result in production of intracellular reactive‐oxygen‐species (ROS) in macrophages. We show that primary gingival epithelial cells (GECs) produce sustained, robust cellular ROS upon stimulation by eATP. The induction of ROS was mediated by P2X7 receptor signalling coupled with NADPH‐oxidase activation, as determined by pharmacological inhibition and RNA interference. Furthermore, Porphyromonas gingivalis, an oral opportunistic pathogen, upregulated the antioxidant glutathione response, modulated eATP‐induced cytosolic and mitochondrial ROS generated through P2X7/NADPH‐oxidase interactome, and subsequently blocked oxidative stress in GECs via temporal secretion of a P. gingivalis effector, nucleoside‐diphosphate‐kinase (Ndk). An ndk‐deficient P. gingivalis mutant lacked the ability to inhibit ROS production and persist intracellularly following eATP stimulation. Treatment with recombinant Ndk significantly diminished eATP‐evoked ROS production. P. gingivalis infection elicited a strong, time‐dependent increase in anti‐oxidativemitochondrial UCP2 levels, whereas ndk‐deficient mutant did not cause any change. The results reveal a novel signalling cascade that is tightly coupled with eATP signalling and ROS regulation. Ndk by P. gingivalis counteracts these antimicrobial signalling activities by secreting Ndk, thus contributing to successful persistence of the pathogen.  相似文献   

3.
4.
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana–Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from β‐sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen‐inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild‐type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild‐type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen‐associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/β‐sitosterol ratio as whole‐leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid‐mediated defence signalling but attenuate pathogen‐induced expression of the defence regulator flavin‐dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to β‐sitosterol ratio in plant membranes.  相似文献   

5.
The defence response of Zantedeschia aethiopica, a natural rhizomatous host of the soft rot bacterium Pectobacterium carotovorum, was studied following the activation of common induced resistance pathways—systemic acquired resistance and induced systemic resistance. Proteomic tools were used, together with in vitro quantification and in situ localization of selected oxidizing enzymes. In total, 527 proteins were analysed by label‐free mass spectrometry (MS) and annotated against the National Center for Biotechnology Information (NCBI) nonredundant (nr) protein database of rice (Oryza sativa). Of these, the fore most differentially expressed group comprised 215 proteins that were primed following application of methyl jasmonate (MJ) and subsequent infection with the pathogen. Sixty‐five proteins were down‐regulated following MJ treatments. The application of benzothiadiazole (BTH) increased the expression of 23 proteins; however, subsequent infection with the pathogen repressed their expression and did not induce priming. The sorting of primed proteins by Gene Ontology protein function category revealed that the primed proteins included nucleic acid‐binding proteins, cofactor‐binding proteins, ion‐binding proteins, transferases, hydrolases and oxidoreductases. In line with the highlighted involvement of oxidoreductases in the defence response, we determined their activities, priming pattern and localization in planta. Increased activities were confined to the area surrounding the pathogen penetration site, associating these enzymes with the induced systemic resistance afforded by the jasmonic acid signalling pathway. The results presented here demonstrate the concerted priming of protein expression following MJ treatment, making it a prominent part of the defence response of Z. aethiopica to P. carotovorum.  相似文献   

6.
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose‐ and time‐dependent reduction in viability, and the agonist‐treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca2+ levels, resulting in Ca2+ uptake by the mitochondria and subsequent H2O2 accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP‐induced increase of intracellular ATP, essential for the activation of caspase‐like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca2+ concentration but plays a negligible role in eATP‐stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.  相似文献   

7.
Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpinPss-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H2O2 and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.  相似文献   

8.
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.  相似文献   

9.
Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid (JA) and salicylic acid (SA), the pathways downstream of JA and SA are unknown. Use of Arabidopsis provides a unique possibility to study signal transduction by use of signalling mutants, which so far has not been exploited in studies on indirect plant defence. In the present study it was demonstrated that jar1‐1 and npr1‐1 mutants are not affected in caterpillar (Pieris rapae)‐induced attraction of the parasitoid Cotesia rubecula. Both JAR1 and NPR1 (also known as NIM1) are involved in signalling downstream of JA in induced defence against pathogens such as induced systemic resistance (ISR). NPR1 is also involved in signalling downstream of SA in defence against pathogens such as systemic acquired resistance (SAR). These results demonstrate that signalling downstream of JA and SA differs between induced indirect defence against herbivores and defence against pathogens such as SAR and ISR. Furthermore, it was demonstrated that herbivore‐derived elicitors are involved in induced attraction of the parasitoid Cotesia rubecula  相似文献   

10.
Plants are under constant attack from a variety of disease‐causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor‐like kinases (RLKs) are involved in the recognition of pathogen‐associated molecular patterns (PAMPs) and activate resistance pathways against broad classes of pathogens. We have identified powdery mildew‐resistant kinase 1, an Arabidopsis gene encoding an RLK that is highly induced by chitin at early time points and localizes to the plasma membrane. Knockout mutants in pmrk1 are more susceptible to both Golovinomyces cichoracearum and Plectosphaerella cucumerina. Our data show that PMRK1 is essential in early stages of defence against fungi and provide evidence that PMRK1 may be unique to chitin‐induced signalling pathways. The results of this study indicate that PMRK1 is a critical component of plant innate immunity against fungal pathogens.  相似文献   

11.
12.
Exposure of plants to UV‐C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub‐lethal UV‐C exposure on Arabidopsis plants when irradiated with increasing dosages of UV‐C radiation. Following UV‐C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m?2 dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage‐ and time‐dependent manner. Analysis of H2O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence‐related responses at each UV‐C dosage tested. Interestingly, in response to UV‐C irradiation the production of callose (β‐1,3‐glucan) was identified at all dosages examined. Together, these results show plant responses to UV‐C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV‐C as an inducer of plant defence.  相似文献   

13.
β‐aminobutyric acid (BABA) was assessed for the ability to protect two artichoke cultivars, C3 and Exploter, against white mould caused by Sclerotinia sclerotiorum, which represents a major problem in the cultivation of this crop in many growing areas of Central Italy. Changes in the activity and isoenzymatic profiles of the pathogenesis‐related (PR) proteins β‐1,3‐glucanase, chitinase and peroxidase in plantlets upon BABA treatment and following inoculation of the pathogen in plantlets and leaves detached from adult plants were also investigated as molecular markers of induced resistance and priming. BABA treatments by soil drenching induced a high level of resistance against S. sclerotiorum in artichoke plantlets of both cultivars C3 and Exploter with a similar level of protection and determined a consistent increase in peroxidase activity paralleled with the differential induction of alkaline isoenzyme with a pI 8.6. A consistent change was found in Exploter in the peroxidase activity following BABA treatments and pathogen inoculation and was paralleled with the expression of an anionic band in plantlets and both anionic and cationic bands in leaves. Our results showed a correlation between BABA‐induced resistance (BABA‐IR) and a augmented capacity to express basal defence responses, more pronounced in cultivar C3 and associated β‐1,3‐glucanase accumulation in both plantlets and leaves inoculated with the pathogen, whereas chitinase resulted affected only at plantlet stage. The present results represent the first one showing the effect of BABA in inducing resistance in artichoke and associated accumulation of selected PRs. If confirmed in field tests, the use of BABA at early plant stages may represent a promising approach to the control soilborne pathogens, such as the early infection of S. sclerotiorum.  相似文献   

14.
Bacterial super‐infections are a major complication in influenza virus‐infected patients. In response to infection with influenza viruses and bacteria, a complex interplay of cellular signalling mechanisms is initiated, regulating the anti‐pathogen response but also pathogen‐supportive functions. Here, we show that influenza viruses replicate to a higher efficiency in cells co‐infected with Staphylococcus aureus (S. aureus). While cells initially respond with increased induction of interferon beta upon super‐infection, subsequent interferon signalling and interferon‐stimulated gene expression are rather impaired due to a block of STAT1‐STAT2 dimerization. Thus, S. aureus interrupts the first line of defence against influenza viruses, resulting in a boost of viral replication, which may lead to enhanced viral pathogenicity.  相似文献   

15.
16.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

17.
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss‐of‐function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild‐type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1‐overexpressing (GIF1‐OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild‐type plants. More importantly, higher levels of callose were deposited in GIF1‐OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1‐OE plants when compared with the wild‐type plants. We also found that defence‐related genes were constitutively activated in the GIF1‐OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.  相似文献   

18.
In mammals, lipid bodies play a key role during pathological and infectious diseases. However, our knowledge on the function of plant lipid bodies, apart from their role as the major site of lipid storage in seed tissues, remains limited. Here, we provide evidence that a calcium‐dependent protein kinase (CPK) mediates pathogen resistance in Arabidopsis. AtCPK1 expression is rapidly induced by fungal elicitors. Loss‐of‐function mutants of AtCPK1 exhibit higher susceptibility to pathogen infection compared to wild‐type plants. Conversely, over‐expression of AtCPK1 leads to accumulation of salicylic acid (SA) and constitutive expression of SA‐regulated defence and disease resistance genes, which, in turn, results in broad‐spectrum protection against pathogen infection. Expression studies in mutants affected in SA‐mediated defence responses revealed an interlocked feedback loop governing AtCPK1 expression and components of the SA‐dependent signalling pathway. Moreover, we demonstrate the dual localization of AtCPK1 in lipid bodies and peroxisomes. Overall, our findings identify AtCPK1 as a component of the innate immune system of Arabidopsis plants.  相似文献   

19.
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non‐host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene‐for‐gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour‐like growths on E. amylovora‐infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora‐induced disease resistance, callose deposition and cell fate change in the non‐host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against Eamylovora and eventually improve host resistance to the pathogen.  相似文献   

20.
Extracellular ATP is a regulator of pathogen defence in plants   总被引:2,自引:0,他引:2  
In healthy plants extracellular ATP (eATP) regulates the balance between cell viability and death. Here we show an unexpected critical regulatory role of eATP in disease resistance and defensive signalling. In tobacco, enzymatic depletion of eATP or competition with non-hydrolysable ATP analogues induced pathogenesis-related ( PR ) gene expression and enhanced resistance to tobacco mosaic virus and Pseudomonas syringae pv. tabaci . Artificially increasing eATP concentrations triggered a drop in levels of the important defensive signal chemical salicylic acid (SA) and compromised basal resistance to viral and bacterial infection. Inoculating tobacco leaf tissues with bacterial pathogens capable of activating PR gene expression triggered a rapid decline in eATP. Conversely, inoculations with mutant bacteria unable to induce defence gene expression failed to deplete eATP. Furthermore, a collapse in eATP concentration immediately preceded PR gene induction by SA. Our study reveals a previously unsuspected role for eATP as a negative regulator of defensive signal transduction and demonstrates its importance as a key signal integrating defence and cell viability in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号