首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The nonsynonymous (amino acid-altering) to synonymous (silent) substitution rate ratio (omega = d(N)/d(S)) provides a measure of natural selection at the protein level, with omega = 1, >1, and <1, indicating neutral evolution, purifying selection, and positive selection, respectively. Previous studies that used this measure to detect positive selection have often taken an approach of pairwise comparison, estimating substitution rates by averaging over all sites in the protein. As most amino acids in a functional protein are under structural and functional constraints and adaptive evolution probably affects only a few sites at a few time points, this approach of averaging rates over sites and over time has little power. Previously, we developed codon-based substitution models that allow the omega ratio to vary either among lineages or among sites. In this paper we extend previous models to allow the omega ratio to vary both among sites and among lineages and implement the new models in the likelihood framework. These models may be useful for identifying positive selection along prespecified lineages that affects only a few sites in the protein. We apply those branch-site models as well as previous branch- and site-specific models to three data sets: the lysozyme genes from primates, the tumor suppressor BRCA1 genes from primates, and the phytochrome (PHY) gene family in angiosperms. Positive selection is detected in the lysozyme and BRCA genes by both the new and the old models. However, only the new models detected positive selection acting on lineages after gene duplication in the PHY gene family. Additional tests on several data sets suggest that the new models may be useful in detecting positive selection after gene duplication in gene family evolution.  相似文献   

2.
Duplicate loci offer a very powerful system for understanding the complicated genome structure and adaptive evolution of a gene family. In this study, the genetic variation at paralogs AtHVA22d and AtHVA22e, members of an ABA- and stress-inducible gene family, is examined in the selfing Arabidopsis thaliana. Population genetic analysis indicates contrasting levels of nucleotide diversity at overall exon sequence and nonsynonymous sites between AtHVA22d (pi = 0.00337, pi(rep) = 0.00158) and AtHVA22e (pi = 0.00054, pi(rep) = 0.00023). The fact of Ka/Ks ratios significantly less than 1 in all sequences indicates that both genes are functional and subjected to purifying selection. In addition, rooted at barley HVA22, accelerated evolution is detected at replacement changes in the AtHVA22d locus, indicating relaxation of purifying selection after gene duplication. However, relative rate tests reveal no deviation from the neutrality at synonymous sites between the two paralogs. Based on clock-like evolution, the rate of synonymous substitution is estimated at 1.83 x 10(-9) substitutions per site per year; and the divergence of the two paralogs is traced to 90 MYA, coinciding with a period of the diversification of angiosperms. Given no codon usage bias in both genes, natural selection alone cannot account for the 6.4-fold differences in the nucleotide variation at synonymous sites between the two paralogs. Random processes resulting in different coalescence times, 3.65 MYA at AtHVA22d vs. 1.20 MYA at AtHVA22e, may have predominantly contributed to the evident differences of the genetic diversity. Partially nonoverlapping modes of expression between the two functional paralogs suggest a subfunctionalization hypothesis for explaining the fates of duplicate loci.  相似文献   

3.
CYCLOIDEA (CYC) and DICHOTOMA (DICH) are paralogous genes that determine adaxial (dorsal) flower identity in the bilaterally symmetric flowers of Antirrhinum majus (snapdragon). We show here that the duplication leading to the existence of both CYC and DICH in Antirrhinum occurred before the radiation of the Antirrhineae (the tribe to which snapdragon belongs). We find no additional gene duplications within Antirrhineae. Using explicit codon-based models of evolution in a likelihood framework, we show that patterns of molecular evolution after the duplication that gave rise to CYC and DICH are consistent with purifying selection acting at both loci, despite their known functional redundancy in snapdragon. However, for specific gene regions, purifying selection is significantly relaxed across DICH lineages, relative to CYC lineages. In addition, we find evidence for relaxed purifying selection along the lineage leading to snapdragon in one of two putative functional domains of DICH. A model of selection accounting for the persistence of paralogous genes in the absence of diversifying selection is presented. This model takes into account differences in the degree of purifying selection acting at the two loci and is consistent with subfunctionalization models of paralogous gene evolution.  相似文献   

4.
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.  相似文献   

5.
Storz JF  Hoffmann FG  Opazo JC  Moriyama H 《Genetics》2008,178(3):1623-1638
The functional divergence of duplicated genes is thought to play an important role in the evolution of new developmental and physiological pathways, but the role of positive selection in driving this process remains controversial. The objective of this study was to test whether amino acid differences among triplicated alpha-globin paralogs of the Norway rat (Rattus norvegicus) and the deer mouse (Peromyscus maniculatus) are attributable to a relaxation of purifying selection or to a history of positive selection that has adapted the gene products to new or modified physiological tasks. In each rodent species, the two paralogs at the 5'-end of the alpha-globin gene cluster (HBA-T1 and HBA-T2) are evolving in concert and are therefore identical or nearly identical in sequence. However, in each case, the HBA-T1 and HBA-T2 paralogs are distinguished from the third paralog at the 3'-end of the gene cluster (HBA-T3) by multiple amino acid substitutions. An analysis of genomic sequence data from several rodent species revealed that the HBA-T3 genes of Rattus and Peromyscus originated via independent, lineage-specific duplication events. In the independently derived HBA-T3 genes of both species, a likelihood analysis based on a codon-substitution model revealed that accelerated rates of amino acid substitution are attributable to positive directional selection, not to a relaxation of purifying selection. As a result of functional divergence among the triplicated alpha-globin genes in Rattus and Peromyscus, the red blood cells of both rodent species contain a mixture of functionally distinct alpha-chain hemoglobin isoforms that are predicted to have different oxygen-binding affinities. In P. maniculatus, a species that is able to sustain physiological function under conditions of chronic hypoxia at high altitude, the coexpression of distinct hemoglobin isoforms with graded oxygen affinities is expected to broaden the permissible range of arterial oxygen tensions for pulmonary/tissue oxygen transport.  相似文献   

6.
The diversity of axon guidance (AG) receptors reflects gains in complexity of the animal nervous system during evolution. Members of the Roundabout (Robo) family of receptors interact with Slit proteins and play important roles in many developmental processes, including AG and neural crest cell migration. There are four members of the Robo gene family. However, the evolutionary history of Robo family genes remain obscure. We analyzed the distribution of Robo family members in metazoan species ranging in complexity from hydras to humans. We undertook a phylogenetic analysis in metazoans, synteny analysis, and ancestral chromosome mapping in vertebrates, and detected selection pressure and functional divergence among four mammalian Robo paralogs. Based on our analysis, we proposed that the ancestral Robo gene could have undergone a tandem duplication in the vertebrate ancestor; then one round of whole genome duplication events occurred before the divergence of ancestral lamprey and gnathostome, generating four paralogs in early vertebrates. Robo4 paralog underwent segmental loss in the following evolutionary process. Our results showed that Robo3 paralog is under more powerful purifying selection pressure compared with other three paralogs, which could correlate with its unique expression pattern and function. Furthermore, we found four sites under positive selection pressure on the Ig1‐2 domains of Robo4 that might interfere with its binding to Slits ligand. Diverge analysis at the amino acid level showed that Robo4 paralog have relatively greater functional diversifications than other Robo paralogs. This coincides with the fact that Robo4 predominantly functions in vascular endothelial cells but not the nervous system.  相似文献   

7.
Yang Z  Nielsen R  Goldman N  Pedersen AM 《Genetics》2000,155(1):431-449
Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (omega = d(N)d(S)) is an important indicator of selective pressure at the protein level, with omega = 1 meaning neutral mutations, omega < 1 purifying selection, and omega > 1 diversifying positive selection. Amino acid sites in a protein are expected to be under different selective pressures and have different underlying omega ratios. We develop models that account for heterogeneous omega ratios among amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate the distributions of omega among sites. In all data sets analyzed, the selective pressure indicated by the omega ratio is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected in several genes in which the average omega ratio across sites is <1, but in which some sites are clearly under diversifying selection with omega > 1. Genes undergoing positive selection include the beta-globin gene from vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected sites and their subsequent identification appear quite robust to the specific distributional form assumed for omega and can be achieved using any of several models we implement. However, we encountered difficulties in estimating the precise distribution of omega among sites from real data sets.  相似文献   

8.
Current hypotheses of gene duplicate divergence propose that surviving members of a gene duplicate pair may evolve, under conditions of purifying or nearly neutral selection, in one of two ways: with new function arising in one duplicate while the other retains original function (neofunctionalization [NF]) or partitioning of the original function between the 2 paralogs (subfunctionalization [SF]). More recent studies propose that SF followed by NF (subneofunctionalization [SNF]) explains the divergence of many duplicate genes. In this analysis, we evaluate these hypotheses in the context of the large monosaccharide transporter (MST) gene families in Arabidopsis and rice. MSTs have an ancient origin, predating plants, and have evolved in the seed plant lineage to comprise 7 subfamilies. In Arabidopsis, 53 putative MST genes have been identified, with one subfamily greatly expanded by tandem gene duplications. We searched the rice genome for members of the MST gene family and compared them with the MST gene family in Arabidopsis to determine subfamily expansion patterns and estimate gene duplicate divergence times. We tested hypotheses of gene duplicate divergence in 24 paralog pairs by comparing protein sequence divergence rates, estimating positive selection on codon sites, and analyzing tissue expression patterns. Results reveal the MST gene family to be significantly larger (65) in rice with 2 subfamilies greatly expanded by tandem duplications. Gene duplicate divergence time estimates indicate that early diversification of most subfamilies occurred in the Proterozoic (2500-540 Myr) and that expansion of large subfamilies continued through the Cenozoic (65-0 Myr). Two-thirds of paralog pairs show statistically symmetric rates of sequence evolution, most consistent with the SF model, with half of those showing evidence for positive selection in one or both genes. Among 8 paralog pairs showing asymmetric divergence rates, most consistent with the NF model, nearly half show evidence of positive selection. Positive selection does not appear in any duplicate pairs younger than approximately 34 Myr. Our data suggest that the NF, SF, and SNF models describe different outcomes along a continuum of divergence resulting from initial conditions of relaxed constraint after duplication.  相似文献   

9.
We have obtained sequence polymorphism data from 13 genes belonging to 5 gene families in Drosophila melanogaster where the K(a)/K(s) between copies is greater than 1. Twelve of these 13 loci are X-linked. In general, there is evidence of purifying selection in all families, as inferred both from levels of silent and replacement variation and insertion/deletion variation, suggesting that the loci are likely functional. Shared polymorphisms indicative of gene conversion between paralogs are rare among the X-linked families, in contrast to available data from autosomal duplicates. McDonald-Kreitman tests between duplicates reveal an excess of amino-acid fixations between copies in the X-linked families, suggesting that the divergence between these loci was driven by positive selection. In contrast, available data from autosomal duplicates show a deficit of fixations, consistent with gene conversion being a strong homogenizing force.  相似文献   

10.
Cantone C  Gaudio L  Aceto S 《Gene》2011,481(1):48-55
Positive selection and relaxation of purifying constraints after duplication events have driven the functional diversification of gene families involved in development. One example of this occurred within the plant MADS-box genes. The evolution of the orchid flower was driven by duplication events followed by sub- and neo-functionalization of class B DEF-like MADS-box genes, which are present at three to four copies in the orchid genome. In contrast, the orchid PI/GLO-like class B MADS-box genes have been reported thus far as single-copy loci, with the only exception of Habenaria radiata.We isolated a novel PI/GLO-like gene (OrcPI2) in Orchis italica, which is different than the previously characterized OrcPI locus. The presence of two functional paralogs of PI/GLO-like genes in orchids is detectable only within the tribe Orchidinae. Evolutionary analyses revealed an apparent relaxation of purifying selection acting on the two PI/GLO-like paralogs of the Orchidinae when compared to the single-copy PI/GLO-like genes found in other orchid species. Furthermore, by measuring dN/dS (ω) ratios, we show that a high percentage of sites between the two PI/GLO-like paralogs have different evolutionary pressures. Interestingly, the apparent relaxation of selective constraints on the two PI/GLO-like paralogs is due to strong purifying selection at synonymous sites rather than to a high value of nonsynonymous substitution rate. This peculiar evolutionary pattern might be related to molecular processes such as mRNA folding and/or translational efficiency control. These processes could potentially be involved in or predate the functional diversification of the two PI/GLO-like paralogs within Orchidinae.  相似文献   

11.
Sun X  Cao Y  Wang S 《Plant physiology》2006,140(3):998-1008
The rice (Oryza sativa) Xa26 gene, which confers resistance to bacterial blight disease and encodes a leucine-rich repeat (LRR) receptor kinase, resides at a locus clustered with tandem homologous genes. To investigate the evolution of this family, four haplotypes from the two subspecies of rice, indica and japonica, were analyzed. Comparative sequence analysis of 34 genes of 10 types of paralogs of the family revealed haplotype polymorphisms and pronounced paralog diversity. The orthologs in different haplotypes were more similar than the paralogs in the same haplotype. At least five types of paralogs were formed before the separation of indica and japonica subspecies. Only 7% of amino acid sites were detected to be under positive selection, which occurred in the extracytoplasmic domain. Approximately 74% of the positively selected sites were solvent-exposed amino acid residues of the LRR domain that have been proposed to be involved in pathogen recognition, and 73% of the hypervariable sites detected in the LRR domain were subject to positive selection. The family is formed by tandem duplication followed by diversification through recombination, deletion, and point mutation. Most variation among genes in the family is caused by point mutations and positive selection.  相似文献   

12.
Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization.  相似文献   

13.
? The petals of the lower eudicot family Ranunculaceae are thought to have been derived many times independently from stamens. However, investigation of the genetic basis of their identity has suggested an alternative hypothesis: that they share a commonly inherited petal identity program. This theory is based on the fact that an ancient paralogous lineage of APETALA3 (AP3) in the Ranunculaceae appears to have a conserved, petal-specific expression pattern. ? Here, we have used a combination of approaches, including RNAi, comparative gene expression and molecular evolutionary studies, to understand the function of this petal-specific AP3 lineage. ? Functional analysis of the Aquilegia locus AqAP3-3 has demonstrated that the paralog is required for petal identity with little contribution to the identity of the other floral organs. Expanded expression studies and analyses of molecular evolutionary patterns provide further evidence that orthologs of AqAP3-3 are primarily expressed in petals and are under higher purifying selection across the family than the other AP3 paralogs. ? Taken together, these findings suggest that the AqAP3-3 lineage underwent progressive subfunctionalization within the order Ranunculales, ultimately yielding a specific role in petal identity that has probably been conserved, in stark contrast with the multiple independent origins predicted by botanical theories.  相似文献   

14.
15.
Despite the unprecedented development in identification and characterization of prophenoloxidase (proPO) in commercially important decapods, little is known about the evolutionary relationship, rate of amino acid replacement and differential selection pressures operating on proPO of different species of decapods. Here we report the evolutionary relationship among these nine decapod species based on proPO gene and types of selective pressures operating on proPO codon sites. Our analyses revealed that all the nine decapod species shared a common ancestor. The mean percentage sequence divergence at proPO gene was 34.4+/-0.6%. Pairwise estimates of nonsynonymous to synonymous ratio (omega) for Homarus americanus-H. gammarus is greater than one, therefore indicating adaptive evolution (functional diversification) of proPO in these two species. In contrast, strong purifying selection (omega<1) was observed in all other species pairs. However, phylogenetically closely related decapods revealed relatively higher omega value (omega=0.15+/-0.3) than the distantly related species pairs (omega=0.0075+/-0.005). These discrepancies could be due to higher fixation probability of beneficial mutation in closely related species. Maximum likelihood-based codon substitution analyses revealed a strong purifying selection operating on most of the codon sites, therefore suggesting proPO is functionally constrained (purifying selection). Codon substitution analyses have also revealed the evidence of strong purifying selection in haemocyanin subunits of decapods.  相似文献   

16.
17.
Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood-oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5' paralog and downstream of the 3' paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness.  相似文献   

18.
The selective pressure at the protein level is usually measured by the nonsynonymous/synonymous rate ratio (omega = dN/dS), with omega < 1, omega = 1, and omega > 1 indicating purifying (or negative) selection, neutral evolution, and diversifying (or positive) selection, respectively. The omega ratio is commonly calculated as an average over sites. As every functional protein has some amino acid sites under selective constraints, averaging rates across sites leads to low power to detect positive selection. Recently developed models of codon substitution allow the omega ratio to vary among sites and appear to be powerful in detecting positive selection in empirical data analysis. In this study, we used computer simulation to investigate the accuracy and power of the likelihood ratio test (LRT) in detecting positive selection at amino acid sites. The test compares two nested models: one that allows for sites under positive selection (with omega > 1), and another that does not, with the chi2 distribution used for significance testing. We found that use of the chi(2) distribution makes the test conservative, especially when the data contain very short and highly similar sequences. Nevertheless, the LRT is powerful. Although the power can be low with only 5 or 6 sequences in the data, it was nearly 100% in data sets of 17 sequences. Sequence length, sequence divergence, and the strength of positive selection also were found to affect the power of the LRT. The exact distribution assumed for the omega ratio over sites was found not to affect the effectiveness of the LRT.  相似文献   

19.
The nonsynonymous to synonymous substitution rate ratio (omega = d(N)/d(S)) provides a sensitive measure of selective pressure at the protein level, with omega values <1, =1, and >1 indicating purifying selection, neutral evolution, and diversifying selection, respectively. Maximum likelihood models of codon substitution developed recently account for variable selective pressures among amino acid sites by employing a statistical distribution for the omega ratio among sites. Those models, called random-sites models, are suitable when we do not know a priori which sites are under what kind of selective pressure. Sometimes prior information (such as the tertiary structure of the protein) might be available to partition sites in the protein into different classes, which are expected to be under different selective pressures. It is then sensible to use such information in the model. In this paper, we implement maximum likelihood models for prepartitioned data sets, which account for the heterogeneity among site partitions by using different omega parameters for the partitions. The models, referred to as fixed-sites models, are also useful for combined analysis of multiple genes from the same set of species. We apply the models to data sets of the major histocompatibility complex (MHC) class I alleles from human populations and of the abalone sperm lysin genes. Structural information is used to partition sites in MHC into two classes: those in the antigen recognition site (ARS) and those outside. Positive selection is detected in the ARS by the fixed-sites models. Similarly, sites in lysin are classified into the buried and solvent-exposed classes according to the tertiary structure, and positive selection was detected at the solvent-exposed sites. The random-sites models identified a number of sites under positive selection in each data set, confirming and elaborating the results of the fixed-sites models. The analysis demonstrates the utility of the fixed-sites models, as well as the power of previous random-sites models, which do not use the prior information to partition sites.  相似文献   

20.
Polyploidization is a prevalent mode of genome diversification within plants. Most gene duplicates arising from polyploidization (paralogs) are typically lost, although a subset may be maintained under selection due to dosage, partitioning of gene function, or acquisition of novel functions. Because they experience selection in the presence of other duplicate loci across the genome, interactions among genes may also play a significant role in the maintenance of paralogs resulting from polyploidization. Previously, we identified duplicates of the genes LFY/FLO and AP3/DEF that directly interact in a floral regulatory pathway and are thought to be the result of ancient polyploidization in the Lamiales (> 50 mya). Although duplicates of MADS box genes including AP3/DEF are common throughout the angiosperm lineage, LFY/FLO duplicates in Lamiales are the first reported outside of tetraploid taxa. In order to explore hypotheses for the joint preservation of these interacting floral regulatory genes including novel LFY/FLO paralogs, here we clone FLO and DEF duplicates from additional Lamiales taxa and apply codon substitution models to test how selection acts on both genes following duplication. We find acceleration in the ratio of nonsynonymous-to-synonymous nucleotide substitutions for one (FLO) or both (DEF) paralogs that appears to be due to relaxed purifying selection as opposed to positive selection and shows a different pattern among functional domains of these genes. Several mechanisms are discussed that might be responsible for preservation of co-orthologs of FLO and DEF in Lamiales, including interactions among the genes of this regulatory pathway. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号