首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased survival of skin flaps by scavengers of superoxide radical   总被引:1,自引:0,他引:1  
Elevation of rat abdominal skin flaps, followed by ligation and division of the left inferior neurovascular pedicle, resulted in only a 40% survival of the area normally perfused by the ligated artery and vein. Superoxide dismutase (SOD) (EC 1.15.1.1) administered i.v. (20,000 U/kg) 30 min before flap elevation increased survival to 52%. SOD derivatized with polyethylene glycol, which increases circulating half-life, was more effective, increasing survival to 80%. This protective effect resulted from the catalytic activity of the derivatized enzyme because inactivation by treatment with H2O2 eliminated its effect on skin flap survival. An equimolar mixture of Desferal and MnCl2, which catalyzes the dismutation of O2- in vitro, improved survival to 72%. Desferal-Fe3+, which lacks in vitro SOD activity, or Mn2+ alone did not affect the survival of skin flaps, but Desferal alone was nearly as effective as the Desferal-Mn2+ mixture. This effect of Desferal may result from acquisition of and subsequent removal of iron in vivo. These results support the view that the superoxide radical or a product derived from it plays a role in limiting the survival of island skin flaps.  相似文献   

2.
Activated oxygen species produced during merocyanine 540 (MC540)-mediated photosensitization have been examined by electron spin resonance (ESR) spin trapping and by trapping reactive intermediates with salicylic acid using HPLC with electrochemical detection (HPLC-EC) for product analysis. Visible light irradiation of MC540 associated with dilauroylphosphatidylcholine liposomes in the presence of the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) gave an ESR spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO/.OH). Addition of ethanol or methanol produced additional hyperfine splittings due to the respective hydroxyalkyl radical adducts, indicating the presence of free.OH.DMPO/.OH formation was not significantly inhibited by Desferal, catalase, or superoxide dismutase (SOD). Production of DMPO/.OH was strongly inhibited by azide and enhanced in samples prepared with deuterated phosphate buffer (PB-D2O), suggesting that singlet molecular oxygen (1O2) was an important intermediate. When MC540-treated liposomes were irradiated in the presence of salicylic acid (SA), HPLC-EC analysis indicated almost exclusive formation of 2,5-dihydroxybenzoic acid (2,5-DHBA), with production of very little 2,3-DHBA, in contrast to .OH generated by uv photolysis of H2O2, which gave nearly equimolar amounts of the two products. 2,5-DHBA production was enhanced in PB-D2O and inhibited by azide, again consistent with 1O2 intermediacy. 2,5-DHBA formation was significantly reduced in samples saturated with N2 or argon, and such samples showed no D2O enhancement. Ethanol had no effect on 2,5-DHBA production, even when present in large excess. Catalase and SOD also had no effect, and only a small inhibition was observed with Desferal. DMPO inhibited 2,5-DHBA production in a concentration-dependent fashion and enhanced formation of 2,3-DHBA. We propose that 1O2 reacts with DMPO to give an intermediate which decays to form DMPO/.OH and free.OH, and that the reaction between 1O2 and SA preferentially forms the 2,5-DHBA isomer. This latter process may provide the basis for a sensitive analytical method to detect 1O2 intermediacy. Singlet oxygen appears to be the principle activated oxygen species produced during MC540-mediated photosensitization.  相似文献   

3.
Metal ions and oxygen radical reactions in human inflammatory joint disease   总被引:7,自引:0,他引:7  
Activated phagocytic cells produce superoxide (O2-) and hydrogen peroxide (H2O2); their production is important in bacterial killing by neutrophils and has been implicated in tissue damage by activated phagocytes. H2O2 and O2- are poorly reactive in aqueous solution and their damaging actions may be related to formation of more reactive species from them. One such species is hydroxyl radical (OH.), formed from H2O2 in the presence of iron- or copper-ion catalysts. A major determinant of the cytotoxicity of O2- and H2O2 is thus the availability and location of metal-ion catalysts of OH. formation. Hydroxyl radical is an initiator of lipid peroxidation. Iron promoters of OH. production present in vivo include ferritin, and loosely bound iron complexes detectable by the 'bleomycin assay'. The chelating agent Desferal (desferrioxamine B methanesulphonate) prevents iron-dependent formation of OH. and protects against phagocyte-dependent tissue injury in several animal models of human disease. The use of Desferal for human treatment should be approached with caution, because preliminary results upon human rheumatoid patients have revealed side effects. It is proposed that OH. radical is a major damaging agent in the inflamed rheumatoid joint and that its formation is facilitated by the release of iron from transferrin, which can be achieved at the low pH present in the micro-environment created by adherent activated phagocytic cells. It is further proposed that one function of lactoferrin is to protect against iron-dependent radical reactions rather than to act as a catalyst of OH. production.  相似文献   

4.
The effects of transition metals on nonenzymatic and ceruloplasmin catalyzed epinephrine oxidation were investigated by studying rates of epinephrine oxidation in purified buffers and in the presence of metal chelating agents. We found that epinephrine does not “autoxidize” in sodium chloride solutions prepared with deionized water that was further purified by chromatography over Chelex 100 resin prior to use. Epinephrine was oxidized rapidly in sodium chloride prepared with tap water (1.20±0.12 nmoles/min) or in deionized water (0.40±0.80 nmoles/min), but this oxidation was prevented by the addition of Desferal, a potent metal chelating agent. Epinephrine oxidation was enhanced upon the addition of ceruloplasmin, and this oxidation rate could be slowed, but not eliminated, by the addition of Desferal. If epinephrine solutions were preincubated for 72 hours with Desferal prior to ceruloplasmin addition, however, no oxidation was observed. Epinephrine was shown to form colored complexes with both iron and copper at pH 7.0. The Fe(III)-epinephrine complex was much more stable than was the Cu(II)-epinephrine complex. Oxygen consumption studies of ceruloplasmin catalyzed epinephrine oxidation showed that copper was a better promoter of epinephrine oxidation than was iron, suggesting that ceruloplasmin-catalyzed epinephrine oxidation results from adventitious copper bound to the purified enzyme. In light of these results, the physiological relevance of ceruloplasmin catalyzed oxidation of biogenic amines may be minor.  相似文献   

5.
The effects of metal salts, chelating agents, and paraquat on the superoxide dismutases (SODs) of Escherichia coli B were explored. Mn(II) increased manganese-containing SOD (MnSOD), whereas Fe(II) increased iron-containing SOD (FeSOD). Chelating agents induced MnSOD but decreased FeSOD and markedly increased the degree of induction seen with Mn(II). Paraquat also exerted a synergistic effect with Mn(II). High levels of MnSOD were achieved in the combined presence of Mn(II), chelating agent, and paraquat. All of these effects were dependent on the presence of oxygen. MnSOD, not ordinarily present in anaerobically grown E. coli cells, was present when the cells were grown anaerobically in the presence of chelating agents. These results are accommodated by a scheme which incorporates autogenous repression by the apoSODs and competition between Fe(II) and Mn(II) for the metal-binding sites of the apoSODs. It is further supposed that oxygenation and intracellular O2- production favor MnSOD production because O2- oxidizes Mn(II) to Mn(III), which competes favorably with Fe(II) for the apoSODs.  相似文献   

6.
The combined effects of hyperthermia (44 degrees C, 20 min) or X-rays (10 Gy) and a new class of furan-fused tetracyclic synthesized compounds (DFs), on apoptosis in human lymphoma U937 cells were investigated. Among the tested compounds (DF1 approximately 6), the combined treatment of 10 microM DF with TIPS (triisopropylsilyloxy) (Designated #3 DF3) and hyperthermia showed the largest potency to induce DNA fragmentation at 6 h after hyperthermia but no enhancement was observed if it was combined with X-rays. Enhancement of hyperthermia-induced apoptosis by DF3 in a dose-dependent manner was observed. When the cells were treated first with DF3 at a nontoxic concentration of 20 microM, and exposed to hyperthermia afterwards, a significant enhancement of heat-induced apoptosis was evidenced by DNA fragmentation, morphological changes and phosphatidylserine externalization. The activation of Bid, but no change of Bax and Bcl-2 were observed after the combined treatment. The release of cytochrome c from mitochondria to cytosol, which was induced by hyperthermia, was enhanced by DF3. Mitochondrial transmembrane potential was decreased and the activation of caspase-3 and caspase-8 was enhanced in the cells treated with the combination. Externalization of Fas was observed following the combined treatment. Flow cytometry revealed rapid and sustained increase of intracellular superoxide due to DF3, and showed subsequent and transient increase in the formation of intracellular hydrogen peroxide (H(2)O(2)), which was further increased when hyperthermia was combined. These results indicate that the intracellular superoxide and H(2)O(2) generated by DF3 enhance the hyperthermia-induced apoptosis via the Fas-mediated mitochondrial caspase-dependent pathway.  相似文献   

7.
Various low-molecular-weight copper chelates have been synthesized to mimic superoxide dismutase (SOD) by catalyzing O2-. dismutation. However, in the presence of cellular proteins, such chelates dissociate and thereby lose their SOD-mimetic activity. In contrast, desferrioxamine-Mn(III) 1:1 chelate (DF-Mn), an SOD-mimic that affords protection from oxidative damage, reportedly is stable in the presence of serum albumin. DF-Mn, unlike SOD, is reported to permeate the membrane of at least one cell type and can protect cells by detoxifying intracellular O2-.. Recently DF-Mn was shown to protect hypoxic cells from H2O2-induced damage. Such results suggest that DF-Mn can protect cells from O2-.-independent damage by alternative mechanisms. This study examines such possibilities. To avoid O2-. participation in the damaging process, killing of monolayered V79 Chinese hamster cells was induced in a hypoxic environment by t-butyl hydroperoxide (t-BHP). Damage induced by t-BHP was inhibitable by DF-Mn. DF-Mn was also found to rapidly oxidize iron(II)-bound DNA. Additionally, once DF-Mn oxidizes Fe(II) or Cu(I), the DF moiety of DF-Mn dissociates and rapidly binds to Fe(III) or Cu(II). Without excluding the possibility that DF-Mn protects cells by facilitating the removal of O2-., the present results show that this SOD-mimic can confer protection from cytotoxic processes independent of O2-. or of O2-.-derived active species.  相似文献   

8.
应用脱氧核糖降解法研究了CuZn-SOD对几种·OH产生系统的作用机理.结果证明:SOD对Fe(3+)·O·H2O2系统中·OH的产生有明显的抑制作用,而失活SOD或BSA对它的抑制作用不大;在Fe(2+)·H2O2和CU(2+)·H2O2系统中,SOD、失活SOD和BAS均能抑制·OH的产生;在Fe(2+)·O系统中,SOD对·OH产生作用不大,而失活SOD或BSA对它有明显的抑制作用.由此推测SOD对·OH形成可能有三方面的影响:1.对O的清除作用,阻断Haber-Weiss反应;2.对金属离子的络合作用,降低·OH的产额;3.促进H2O2的积累,加快Fenton反应.  相似文献   

9.
We have reinvestigated the biochemistry of H2O2-induced Cu,Zn-superoxide dismutase (SOD1)-centered radicals, detecting them by immuno-spin trapping. These radicals are involved in H2O2-induced structural and functional damage to SOD1, and their mechanism of generation depends on copper and/or (bi)carbonate (i.e., CO2, CO3(-2), or HCO3-). First, in the absence of DTPA and (bi)carbonate, Cu(II) was partially released and rebound at His, Cys, and Tyr residues in SOD1 with the generation of protein-copper-bound oxidants outside the SOD1 active site by reaction with excess H2O2. These species produced immuno-spin trapping-detectable SOD1-centered radicals associated with H2O2-induced active site ( approximately 5 and approximately 10 kDa fragments) and non-active site (smearing between 3 and 16 kDa) copper-dependent backbone oxidations and subsequent fragmentation of SOD1. Second, in the presence of DTPA, which inhibits H2O2-induced SOD1 non-active site fragmentation, (bi)carbonate scavenged the enzyme-bound oxidant at the SOD1 active site to produce the carbonate radical anion, CO3*-, thus protecting against active site SOD1 fragmentation. CO3*- diffuses and produces side chain oxidations forming DMPO-trappable radical sites outside the enzyme active site. Both mechanisms for generating immuno-spin trapping-detectable SOD1-centered radicals were susceptible to inhibition by cyanide and enhanced at high pH values. In addition, (bi)carbonate enhanced H2O2-induced SOD1 turnover as demonstrated by an enhancement in oxygen evolution and SOD1 inactivation. These results help clarify the free radical chemistry involved in the functional and structural oxidative damage to SOD1 by H2O2 with the intermediacy of copper- and CO3*--mediated oxidations.  相似文献   

10.
S Kerbs  R Hutton  M Lancaster 《Sabouraudia》1979,17(3):241-250
Deferoxamine methanesulfonate (Desferal), an iron chelator, inhibited germ tube formation and growth of Trichophyton mentagrophytes in a microculture assay. A 50% reduction of germ tube formation required Desferal at 5 mg/ml and a 50% reduction of growth required 1.5 mg/ml. Growth was almost completely inhibited with 50 and 100 mg/ml. Also, Desferal at 100 mg/ml inhibited further elongation when added to short hyphae (II and 21 micrometer), but showed less inhibitory effects when added to long hyphae (64 micrometer). Iron (133 microgram/ml) reversed the inhibition of growth produced by incubating spores with Desferal at 5 mg/ml, providing iron was added before 72 h incubation. Desferal at 100 mg/ml decreased viability of activated spores incubated for 3 days at 30 degrees C, but did not decrease viability of spores incubated for 3 days at 4 degrees C. The growth inhibitory effect of Desferal and transferrin were compared. Transferrin was inhibitory at low molarities (0.001 to 1.0 mM), while Desferal was inhibitory only at higher molarities (greater than 1 mM). Desferal (0.05 mM) also reversed the inhibition expected with 0.05 mM transferrin. These findings indicate that Desferal and transferrin deprive T. mentagrophytes of nutritional iron and thus inhibit growth of the fungus. Low concentrations of Desferal can also promote growth in the presence of transferrin.  相似文献   

11.
IMS (intermembrane space) SOD1 (Cu/Zn-superoxide dismutase) is inactive in isolated intact rat liver mitochondria and is activated following oxidative modification of its critical thiol groups. The present study aimed to identify biochemical pathways implicated in the regulation of IMS SOD1 activity and to assess the impact of its functional state on key mitochondrial events. Exogenous H2O2 (5 microM) activated SOD1 in intact mitochondria. However, neither H2O2 alone nor H2O2 in the presence of mitochondrial peroxiredoxin III activated SOD1, which was purified from mitochondria and subsequently reduced by dithiothreitol to an inactive state. The reduced enzyme was activated following incubation with the superoxide generating system, xanthine and xanthine oxidase. In intact mitochondria, the extent and duration of SOD1 activation was inversely correlated with mitochondrial superoxide production. The presence of TxrR-1 (thioredoxin reductase-1) was demonstrated in the mitochondrial IMS by Western blotting. Inhibitors of TxrR-1, CDNB (1-chloro-2,4-dinitrobenzene) or auranofin, prolonged the duration of H2O2-induced SOD1 activity in intact mitochondria. TxrR-1 inactivated SOD1 purified from mitochondria in an active oxidized state. Activation of IMS SOD1 by exogenous H2O2 delayed CaCl2-induced loss of transmembrane potential, decreased cytochrome c release and markedly prevented superoxide-induced loss of aconitase activity in intact mitochondria respiring at state-3. These findings suggest that H2O2, superoxide and TxrR-1 regulate IMS SOD1 activity reversibly, and that the active enzyme is implicated in protecting vital mitochondrial functions.  相似文献   

12.
Vanadate markedly stimulates the oxidation of NADH by O2-. Both phosphate and Tris are inhibitory, but phosphate diminishes the greater inhibitory effect of Tris and thus gives the appearance of stimulating when added to Tris-buffered reaction mixtures. Chelating agents moderately increased the oxidation of NADH but eliminated the much greater catalytic effect of vanadate. Desferal was the most effective of the chelating agents, and could be used to titrate vanadate spectrophotometrically or in terms of the diminution of its catalytic activity. This permitted the demonstration that metavanadate or orthovanadate could form 1:1 complexes with desferal and that orthovanadate was the catalytically active species.  相似文献   

13.
T Offer  A Russo  A Samuni 《FASEB journal》2000,14(9):1215-1223
Native Cu,Zn-SOD and synthetic SOD mimics sometimes demonstrate an apparently anomalous bell-shaped dose-response relationship when protecting various biological systems from oxidative stress. Several mechanisms have been proposed to account for such an effect, including: overproduction of H(2)O(2), peroxidative activity of SOD, and opposing roles played by O(2)(*-) in both initiation and termination of radical chain reactions. In the present study, ferrocyanide and thiols, which are susceptible to one-electron and two-electron oxidation, respectively, were subjected to a flux of superoxide in the presence and absence of SOD or SOD mimics. The results show that 1) either O(2)(*-)/HO(2)(*) or H(2)O(2) alone partially inactivates papain, whereas when combined they act synergistically; 2) nitroxide SOD mimics, but not SOD, exhibit a bell-shaped dose-response relationship in protecting papain from inactivation; 3) SOD, which at low dose inhibits superoxide-induced oxidation of ferrocyanide, loses its antioxidative effect as its concentration increases. These findings offer an additional explanation for the pro-oxidative activity of SOD and SOD mimics without invoking any dual activity of O(2)(*-) or a combined effect of SOD and H(2)O(2). The most significant outcome of an increase in SOD level is a decrease of [O(2)(*-)](steady state), rather than any notable elevation of [H(2)O(2)](steady state). As a result, the reaction kinetics of the high oxidation state of each catalyst is altered. In the presence of ultra-low [O(2)(*-)](steady state), the oxidized form of SOD [Cu(II),Zn-SOD] or SOD mimic (oxo-ammonium cation) does not react with O(2)(*-) but rather oxidizes the target molecule that it was supposed to have protected. Consequently, these catalysts exert an anti- or pro-oxidative effect depending on their concentration.  相似文献   

14.
Survival of V-79 Chinese hamster cells was assessed by colony growth assay after hypothermic exposure in the presence of iron chelators. At 5 degrees C, maximum protection from hypothermic damage was achieved with a 50 microM concentration of the intracellular ferric iron chelator Desferal. A 3-hr prehypothermic incubation with 50 microM Desferal followed by replacement with chelator-free medium at 5 degrees C also provided some protection. This was not observed when the extracellular chelator DETA-PAC (50 microM) was used prior to cold storage. Treating 5 degrees C-stored cells with Desferal just prior to rewarming was ineffective, but treating cells with Desferal during hypothermia exposure after a significant period of unprotected cold exposure ultimately increased the surviving fraction. Submaximal protection during hypothermia was achieved to various degrees with extracellular chelators at 5 degrees C, including 50 microM DETAPAC and 110 microM EDTA. EGTA (110 microM) had little effect. The sensitization of cells at 5 degrees C with 200 microM FeCl3 could be reduced or eliminated with Desferal in accordance with a 1:1 binding ratio. At 10 degrees C, 50 microM Desferal, 50 microM DETAPAC, and 110 microM EDTA were as or less effective in protecting cells than at 5 degrees C. An Arrhenius plot of cell inactivation rates shows a break at 7-8 degrees C, corresponding to maximum survival for control cells and cells in 50 microM Desferal; however, the amount of protection offered by the chelator increases with decreasing temperature below about 19 degrees C, and sensitization increases above that point. It has not previously been shown that iron chelators protect against cellular hypothermia damage which is uncomplicated by previous or simultaneous ischemia. This may be relevant to the low-temperature storage of transplant organs, in which iron of intracellular origin and in the perfusate may be active and damaging.  相似文献   

15.
For decades, desferrioxamine B (Desferal) has been the therapeutic iron chelator of choice for iron-overload treatment, despite numerous problems associated with its use. Consequently, there is a continuous search for new iron chelating agents with improved properties, particularly oral activity. We have studied new potential therapeutic iron sequestering agents: multidentate ligands containing the hydroxypyridonate (HOPO) moiety. The ligands TRENCAM-3,2-HOPO, TRPN-3,2-HOPO, TREN-Me-3,2-HOPO, TREN-1,2,3-HOPO, 5LIO-3,2-HOPO, and BU-O-3,4-HOPO have been examined for their ability to remove iron from human diferric transferrin. The iron removal ability of the HOPO ligands is compared with that of the hydroxamate desferrioxamine B, the catecholates TRENCAM and enterobactin, as well as the bidentate hydroxypyridonate deferiprone, a proposed therapeutic substitute for Desferal. All the tested HOPO ligands efficiently remove iron from diferric transferrin at millimolar concentrations, with a hyperbolic dependence on ligand concentration. At high ligand concentrations, the fastest rates are found with the tetra- and bidentate hydroxypyridonates 5LIO-3,2-HOPO and deferiprone, and the slowest rates with the catecholate ligands. At low concentrations, closer to therapeutic dosage, hexadentate ligands which possess high pM values have the fastest rates of iron removal. TRENCAM-3,2-HOPO and TREN-Me-3,2-HOPO are the most efficient at lower doses and are regarded as having high potential as therapeutic agents. The kinetics of removal of Ga(III) from transferrin [in place of the redox active Fe(III)] were performed with TRENCAM and TREN-Me-3,2-HOPO to determine that there is no catalytic reduction step involved in iron removal.  相似文献   

16.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. In our study, we investigated the effect of a wide range of ROS on Chinese hamster lung fibroblast (V79) cell proliferation. Treatment with H2O2 (100 microM), superoxide anion (generated by 1 mM xanthine and 1 mU/ml xanthine oxidase), menadione, and phenazine methosulfate increased the cell proliferation by approximately 50%. Moreover, a similar result was observed after partial inhibition of superoxide dismutase (SOD) and glutathione peroxidase. This upregulation of cell proliferation was suppressed by pretreatment with hydroxyl radical scavengers and iron chelating agents. In addition to ROS, treatment with exogenous catalase and SOD mimic (MnTMPyP) suppressed the normal cell proliferation. Short-term exposure of the cells to 100 microM H2O2 was sufficient to induce proliferation, which indicated that activation of the signaling pathway is important as an early event. Accordingly, we assessed the ability of H2O2 to activate mitogen-activated protein kinases (MAPK). Jun-N-terminal kinase (JNK) and p38 MAPK were both rapidly and transiently activated by 100 microM H2O2, with maximal activation 30 min after treatment. However, the activity of extracellular signal-regulated kinase (ERK) was not changed. Pretreatment with SB203580 and SB202190, specific inhibitors of p38 MAPK, reduced the cell proliferation induced by H2O2. The activation of both JNK and p38 MAPK was also suppressed by pretreatment with hydroxyl radical scavenger and iron chelating agents. Our results suggest that the trace metal-driven Fenton reaction is a central mechanism that underlies cell proliferation and MAPK activation.  相似文献   

17.
Oxidative DNA damage caused by a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and a cysteine as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner, as reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance DNA damage. The capacity of CuZnSOD to enhance damage to DNA was inhibited by a spin-trapping agent, 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) and a metal chelator, diethylenetriaminepentaacetic acid (DETAPAC). The deoxyribose assay showed that hydroxyl free radicals were generated in the reaction of CuZnSOD with Cys-MCO. We found that the Cys-MCO system caused the release of free copper from CuZnSOD. CuZnSOD also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Based on these results, we interpret the effects of CuZnSOD on Cys-MCO-induced DNA damage and mutation as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged CuZnSOD, and H(2)O(2) produced by the Cys-MCO system.  相似文献   

18.
We examined the effect of bicarbonate on the peroxidase activity of copper-zinc superoxide dismutase (SOD1), using the nitrite anion as a peroxidase probe. Oxidation of nitrite by the enzyme-bound oxidant results in the formation of the nitrogen dioxide radical, which was measured by monitoring 5-nitro-gamma-tocopherol formation. Results indicate that the presence of bicarbonate is not required for the peroxidase activity of SOD1, as monitored by the SOD1/H(2)O(2)-mediated nitration of gamma-tocopherol in the presence of nitrite. However, bicarbonate enhanced SOD1/H(2)O(2)-dependent oxidation of tocopherols in the presence and absence of nitrite and dramatically enhanced SOD1/H(2)O(2)-mediated oxidation of unsaturated lipid in the presence of nitrite. These results, coupled with the finding that bicarbonate protects against inactivation of SOD1 by H(2)O(2), suggest that SOD1/H(2)O(2) oxidizes the bicarbonate anion to the carbonate radical anion. Thus, the amplification of peroxidase activity of SOD1/H(2)O(2) by bicarbonate is attributed to the intermediary role of the diffusible oxidant, the carbonate radical anion. We conclude that, contrary to a previous report (Sankarapandi, S., and Zweier, J. L. (1999) J. Biol. Chem. 274, 1226-1232), bicarbonate is not required for peroxidase activity mediated by SOD1 and H(2)O(2). However, bicarbonate enhanced the peroxidase activity of SOD1 via formation of a putative carbonate radical anion. Biological implications of the carbonate radical anion in free radical biology are discussed.  相似文献   

19.
Although mucins provide lubrication and physical protection for epithelial cell surfaces, other functional roles for these large glycoproteins are unknown. One human mucin, designated DF3 Ag, is detectable on apical surfaces of normal epithelial secretory cells and in normal milk, urine, and plasma. The present studies have examined the effects of DF3 Ag purified from both normal and malignant sources on the antibody-dependent cytotoxicity of Schistosoma mansoni by eosinophils (ADCC-E) and on the adherence of eosinophils to inert antibody-coated targets. DF3 Ag purified from tissue culture supernatant of a human breast carcinoma cell line or from human milk inhibited ADCC-E in a concentration-dependent manner, with half-maximal inhibitory activity at 3 to 10 micrograms/ml. Inhibition of ADCC-E was specific for the DF3 mucin, because no inhibition was observed with two other unrelated, circulating glycoproteins: carcinoembryonic Ag and alpha 1-acid glycoprotein. Inhibition was not a result of direct cytotoxicity of the DF3 Ag for eosinophils, as demonstrated by the lack of detectable effect of the mucin on cellular trypan blue exclusion or PMA-induced H2O2 release. The inhibitory effect was time dependent, requiring the presence of DF3 Ag in the ADCC-E culture for at least 4 h, beginning within the first 2 h of eosinophil-schistosomula interaction. Furthermore, inhibition was not a result of interaction between DF3 Ag and the activating lymphokine. These data suggest that inhibition of ADCC-E by DF3 Ag is a result of interference of adhesion of eosinophils to Ig-coated targets. In this regard, purified DF3 tumor Ag prevents eosinophil adherence to human Ig-conjugated Sepharose 4B beads. Preincubation of the inert Ig-coated targets with DF3 Ag did not inhibit subsequent eosinophil adherence, suggesting that DF3 Ag interacts with a moiety present on the eosinophil. Inhibition of adhesion occurred at 37 degrees C, but was also observed at 4 degrees C. These results suggest that DF3 Ag acts as an immunomodulating agent. Because activated eosinophils can damage surrounding normal tissues as well as infectious organisms, DF3 Ag may serve to protect secretory epithelium from the cytotoxic effects of activated inflammatory cells.  相似文献   

20.
The ability of lactoferrin to catalyse hydroxyl radical production was determined by measuring ethylene production from methional (2-amino-4-methylthiobutyraldehyde) or 4-methylthio-2-oxobutyrate. Lactoferrin, isolated from human milk and saturated by adding the exact equivalents of Fe3+-nitrilotriacetic acid and dialysing, give little if any catalysis of the reaction between H2O2 and either O2-. or ascorbic acid at either pH 7.4 or pH 5.0. However, in the presence of chelating agents such as EDTA or nitrilotriacetic acid that can complex with lactoferrin, hydroxyl radical production by both mechanisms was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号