首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Co‐inheritance in life‐history traits may result in unpredictable evolutionary trajectories if not accounted for in life‐history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life‐history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co‐inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8–3.5 90% CI) times higher for fish with the early‐maturing vgll3 genotype (EE) compared to fish with the late‐maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first‐time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life‐history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.  相似文献   

2.
The euryhaline European sea bass Dicentrarchus labrax L., inhabiting the coasts of the eastern Atlantic Ocean and Mediterranean Sea, has had many opportunities for differentiation throughout its large natural range. However, evidence for this has been incompletely documented geographically and with an insufficient number of markers. Therefore, its full range was sampled at 22 sites and individuals were genotyped with a suite of mapped markers, including 14 microsatellite loci (N = 536) and 46 neutral or gene‐linked single nucleotide polymorphisms (SNPs; N = 644). We confirm that the Atlantic and Mediterranean basins harbour two distinct lineages. Within the Atlantic Ocean no pattern was obvious based on the microsatellite and SNP genotypes, except for a subtle difference between South‐eastern and North‐eastern Atlantic sea bass attributed to limited introgression of alleles of Mediterranean origin. SNP genotypes of the Mediterranean lineage differentiated into three groups, probably under the influence of geographical isolation. The Western Mediterranean group showed genetic homogeneity without evidence for outlier loci. The Adriatic group appeared as a distinct unit. The Eastern Mediterranean group showed a longitudinal gradient of genotypes and most interestingly an outlier locus linked to the somatolactin gene. Overall, the spatial pattern fits those observed with other taxa of between‐basin segregation and within‐basin connectivity, which concurs well with the swimming capabilities of European sea bass. Evidence from a few outlier loci in this and other studies encourages further exploration of its regional connectivity and adaptive evolution.  相似文献   

3.
Atlantic herring (Clupea harengus), a vital ecosystem component and target of the largest Northwest Atlantic pelagic fishery, undergo seasonal spawning migrations that result in elusive sympatric population structure. Herring spawn mostly in fall or spring, and genomic differentiation was recently detected between these groups. Here we used a subset of this differentiation, 66 single nucleotide polymorphisms (SNPs) to analyze the temporal dynamics of this local adaptation and the applicability of SNP subsets in stock assessment. We showed remarkable temporal stability of genomic differentiation corresponding to spawning season, between samples taken a decade apart (2005 N = 90 vs. 2014 N = 71) in the Gulf of St. Lawrence, and new evidence of limited interbreeding between spawning components. We also examined an understudied and overexploited herring population in Bras d'Or lake (N = 97); using highly reduced SNP panels (NSNPs > 6), we verified little‐known sympatric spawning populations within this unique inland sea. These results describe consistent local adaptation, arising from asynchronous reproduction in a migratory and dynamic marine species. Our research demonstrates the efficiency and precision of SNP‐based assessments of sympatric subpopulations; and indeed, this temporally stable local adaptation underlines the importance of such fine‐scale management practices.  相似文献   

4.
With its small, diploid and completely sequenced genome, sorghum (Sorghum bicolor L. Moench) is highly amenable to genomics‐based breeding approaches. Here, we describe the development and testing of a robust single‐nucleotide polymorphism (SNP) array platform that enables polymorphism screening for genome‐wide and trait‐linked polymorphisms in genetically diverse S. bicolor populations. Whole‐genome sequences with 6× to 12× coverage from five genetically diverse S. bicolor genotypes, including three sweet sorghums and two grain sorghums, were aligned to the sorghum reference genome. From over 1 million high‐quality SNPs, we selected 2124 Infinium Type II SNPs that were informative in all six source genomes, gave an optimal Assay Design Tool (ADT) score, had allele frequencies of 50% in the six genotypes and were evenly spaced throughout the S. bicolor genome. Furthermore, by phenotype‐based pool sequencing, we selected an additional 876 SNPs with a phenotypic association to early‐stage chilling tolerance, a key trait for European sorghum breeding. The 3000 attempted bead types were used to populate half of a dual‐species Illumina iSelect SNP array. The array was tested using 564 Sorghum spp. genotypes, including offspring from four unrelated recombinant inbred line (RIL) and F2 populations and a genetic diversity collection. A high call rate of over 80% enabled validation of 2620 robust and polymorphic sorghum SNPs, underlining the efficiency of the array development scheme for whole‐genome SNP selection and screening, with diverse applications including genetic mapping, genome‐wide association studies and genomic selection.  相似文献   

5.
Identification of discrete and unique assemblages of individuals or populations is central to the management of exploited species. Advances in population genomics provide new opportunities for re‐evaluating existing conservation units but comparisons among approaches remain rare. We compare the utility of RAD‐seq, a single nucleotide polymorphism (SNP) array and a microsatellite panel to resolve spatial structuring under a scenario of possible trans‐Atlantic secondary contact in a threatened Atlantic Salmon, Salmo salar, population in southern Newfoundland. Bayesian clustering indentified two large groups subdividing the existing conservation unit and multivariate analyses indicated significant similarity in spatial structuring among the three data sets. mtDNA alleles diagnostic for European ancestry displayed increased frequency in southeastern Newfoundland and were correlated with spatial structure in all marker types. Evidence consistent with introgression among these two groups was present in both SNP data sets but not the microsatellite data. Asymmetry in the degree of introgression was also apparent in SNP data sets with evidence of gene flow towards the east or European type. This work highlights the utility of RAD‐seq based approaches for the resolution of complex spatial patterns, resolves a region of trans‐Atlantic secondary contact in Atlantic Salmon in Newfoundland and demonstrates the utility of multiple marker comparisons in identifying dynamics of introgression.  相似文献   

6.
Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade‐offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their ‘sea age’). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual‐based genome‐wide association studies (GWAS) and population‐based FST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome‐wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context.  相似文献   

7.
Understanding the genetic basis of variation in traits related to growth and fillet quality in Atlantic salmon is of importance to the aquaculture industry. Several growth‐related QTL have been identified via the application of genetic markers. The IGF1 gene is considered a highly conserved and crucial growth‐regulating gene in salmonid species. However, the association between polymorphisms in the IGF1 gene and growth‐related traits in Atlantic salmon is unknown. Therefore, in this study, regions of the Atlantic salmon IGF1 gene were sequenced, aligned and compared across individuals. Three SNPs were identified in the putative promoter (SNP1, g.5763G>T; GenBank no. AGKD01012745 ), intron 1 (SNP2, g.7292C>T; GenBank no. AGKD01012745 ) and intron 3 (SNP3, g.4671A>C; GenBank no. AGKD01133398 ) regions respectively. These SNPs were genotyped in a population of 4800 commercial Atlantic salmon with data on several weight and fillet traits measured at harvest (at approximately 3 years of age). In a mixed model, association analysis of individual SNPs, SNP1 and SNP3 were both significantly associated with several weight traits (< 0.05). The estimated additive effect on overall harvest weight was approximately 35 and 110 g for SNPs 1 and 3 respectively. A haplotype analysis confirmed the association between genetic variation in the IGF1 gene with overall body weight (< 0.05) and fillet component traits (< 0.05). Our findings suggest the identified nucleotide polymorphisms of the IGF1 gene may either affect farmed Atlantic salmon growth directly or be in population‐wide linkage disequilibrium with causal variation, highlighting their possible utility as candidates for marker‐assisted selection in the aquaculture industry.  相似文献   

8.
Our previous genome‐wide association study in sheep revealed that OAR3‐84073899.1 (SNP31) in intron 8 of the CAMKMT gene was significantly associated with post‐weaning gain at the genomic level. Herein, we performed a replication study to investigate single nucleotide polymorphisms (SNPs) within the CAMKMT gene exons, and 1000 bp of the 5′‐ and 3′‐intranslated regions (UTRs) and their associations with growth traits in Ujumqin sheep. Five SNPs were identified through DNA pool sequencing technology: SNP26 in the 5′‐UTR, SNP06 in exon 5, SNP07 in exon 8 and SNP27 and SNP28 in the 3′‐UTR. Six SNPs, including SNP31 in intron 8, were genotyped in the validation group of 343 Ujumqin sheep, and each SNP was classified into three genotypes. The chi‐square test suggested that all the variations were in Hardy–Weinberg equilibrium (> 0.05) except for SNP28 and SNP31. Linkage disequilibrium analysis showed that SNP07 and SNP31 were strongly linked. An association analysis suggested that SNP06 was significantly associated with chest girth at 6 months of age (< 0.05). SNP07 exhibited significant correlation with body weight and chest girth at 4 months of age and with body weight, chest girth and chest width at 6 months of age (< 0.05). SNP27 was highly associated with body weight and chest girth at 4 months of age (< 0.05), and SNP28 was extremely significantly associated with body weight and chest girth at 4 months of age and with chest girth at 6 months of age (< 0.01). SNP31 was significantly associated with body weight and shin circumference at 4 months of age and with post‐weaning gain (< 0.05). Association analysis of the combined effect of SNP07 and SNP31 showed significant correlation with body weight and chest girth at four of months of age (< 0.05) and with body weight and chest girth at 6 months of age (< 0.05). These results indicate that the SNPs could be used as meritorious and available genetic markers in growth traits breeding and that the CAMKMT gene may be one of the key candidate genes that affect Ujumqin economic traits.  相似文献   

9.
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young‐of‐the‐year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid‐Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.  相似文献   

10.
The historical phylogeography, biogeography, and ecology of Atlantic cod (Gadus morhua) have been impacted by cyclic Pleistocene glaciations, where drops in sea temperatures led to sequestering of water in ice sheets, emergence of continental shelves, and changes to ocean currents. High‐resolution, whole‐genome mitogenomic phylogeography can help to elucidate this history. We identified eight major haplogroups among 153 fish from 14 populations by Bayesian, parsimony, and distance methods, including one that extends the species coalescent back to ca. 330 kya. Fish from the Barents and Baltic Seas tend to occur in basal haplogroups versus more recent distribution of fish in the Northwest Atlantic. There was significant differentiation in the majority of trans‐Atlantic comparisons (ΦST = .029–.180), but little or none in pairwise comparisons within the Northwest Atlantic of individual populations (ΦST = .000–.060) or defined management stocks (ΦST = .000–.023). Monte Carlo randomization tests of population phylogeography showed significantly nonrandom trans‐Atlantic phylogeography versus absence of such structure within various partitions of trans‐Laurentian, Northern cod (NAFO 2J3KL) and other management stocks, and Flemish Cap populations. A landlocked meromictic fjord on Baffin Island comprised multiple identical or near‐identical mitogenomes in two major polyphyletic clades, and was significantly differentiated from all other populations (ΦST = .153–.340). The phylogeography supports a hypothesis of an eastern origin of genetic diversity ca. 200–250 kya, rapid expansion of a western superhaplogroup comprising four haplogroups ca. 150 kya, and recent postglacial founder populations.  相似文献   

11.
We isolated and characterized eight novel microsatellite loci in the southern emu‐wren (Stipiturus malachurus). We used nonradioactive polymerase chain reaction (PCR)‐based techniques to screen an enriched genomic DNA library. Based on genotypes from a single population, six loci showed no evidence of null alleles and were polymorphic (allele range = 2–9, mean heterozygosity = 0.57), and one locus was sex‐linked (NA = 4). These loci were variable and had different allele size ranges in three other populations of southern emu‐wrens, and are therefore useful for determining levels of genetic diversity within and between populations of the species.  相似文献   

12.
Post‐smolt scale circulus spacing patterns for two Atlantic salmon Salmo salar populations from the Southern Upland (SU) of Nova Scotia, Canada, were compared with spacings from two endangered populations from the inner Bay of Fundy (iBoF) Nova Scotia and New Brunswick, to determine if growth patterns differed among these populations, and if growth patterns had changed as the abundance of these populations declined. An analysis of numbers of marine circuli from scales of post‐smolts and one‐sea‐winter adults of known age indicated that circuli were deposited at a rate of about one circulus per week in summer and slowed to one every 2 weeks in winter. During the summer and the autumn, mean circulus spacing in the iBoF populations, known to have occupied the outer Bay of Fundy during these seasons, was lower than in the SU populations, which are known to migrate to the North Atlantic. Similar circulus spacing patterns within SU populations is suggestive of a common marine distribution for these populations. In contrast, a cluster analysis revealed that within the geographically intermediate Big Salmon River (iBoF), some individuals exhibited wider spacing patterns that resemble the distant migrating SU populations, while others exhibited narrower spacing similar to other iBoF S. salar. Within the Big Salmon River, the relative abundance of the wider and the narrower spacing patterns varied in the earlier years, but all fish sampled since 1999, exhibited wider spacings similar to distant migrating SU S. salar. The apparent disappearance of the narrower pattern, characteristic of localized migration and indicative of historical iBoF populations, suggests that local migration may not presently be a successful strategy for these populations.  相似文献   

13.
A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype–phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole‐genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom® myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high‐density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high‐resolution genomewide information.  相似文献   

14.
Several lines of evidence suggest that recent long‐distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi‐Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (im and migrate ) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average FST = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long‐range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000–289 000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi‐Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.  相似文献   

15.
Whole genome resequencing of 51 Populus nigra (L.) individuals from across Western Europe was performed using Illumina platforms. A total number of 1 878 727 SNPs distributed along the P. nigra reference sequence were identified. The SNP calling accuracy was validated with Sanger sequencing. SNPs were selected within 14 previously identified QTL regions, 2916 expressional candidate genes related to rust resistance, wood properties, water‐use efficiency and bud phenology and 1732 genes randomly spread across the genome. Over 10 000 SNPs were selected for the construction of a 12k Infinium Bead‐Chip array dedicated to association mapping. The SNP genotyping assay was performed with 888 P. nigra individuals. The genotyping success rate was 91%. Our high success rate was due to the discovery panel design and the stringent parameters applied for SNP calling and selection. In the same set of P. nigra genotypes, linkage disequilibrium throughout the genome decayed on average within 5–7 kb to half of its maximum value. As an application test, ADMIXTURE analysis was performed with a selection of 600 SNPs spread throughout the genome and 706 individuals collected along 12 river basins. The admixture pattern was consistent with genetic diversity revealed by neutral markers and the geographical distribution of the populations. These newly developed SNP resources and genotyping array provide a valuable tool for population genetic studies and identification of QTLs through natural‐population based genetic association studies in P. nigra.  相似文献   

16.
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

17.
Hair morphology is a highly divergent phenotype among human populations. We recently reported that a nonsynonymous SNP in the ectodysplasin A receptor (EDAR 1540T/C) is associated with head hair fiber thickness in an ethnic group in Thailand (Thai-Mai) and an Indonesian population. However, these Southeast Asian populations are genetically and geographically close, and thus the genetic contribution of EDAR to hair morphological variation in the other Asian populations has remained unclear. In this study, we examined the association of 1540T/C with hair morphology in a Japanese population (Northeast Asian). As observed in our previous study, 1540T/C showed a significant association with hair cross-sectional area (P = 2.7 × 10−6) in Japanese. When all populations (Thai-Mai, Indonesian, and Japanese) were combined, the association of 1540T/C was stronger (P = 3.8 × 10−10) than those of age, sex, and population. These results indicate that EDAR is the genetic determinant of hair thickness as well as a strong contributor to hair fiber thickness variation among Asian populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Genomic tools are lacking for invasive and native populations of sea lamprey (Petromyzon marinus). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site‐associated DNA sequencing (RAD‐Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean FST 0.008; range 0.00–0.018) were concordant with previous microsatellite‐based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age‐1 and age‐2 families of full and half‐siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non‐native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.  相似文献   

19.
Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter‐ and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish water populations, respectively, are weakly or moderately deleterious. Using in silico prediction tools (MutPred, SNAP2), we subsequently identified nonsynonymous polymorphisms with potentially harmful effect. Both prediction methods indicated that the functional effects of the fixed nonsynonymous substitutions between nine‐ and three‐spined stickleback were weaker than for polymorphisms within species, indicating that harmful nonsynonymous polymorphisms within populations rarely become fixed between species. No significant differences in mean estimated functional effects were identified between freshwater and brackish water nine‐spined stickleback to support the hypothesis that reduced osmoregulatory energy demand in the brackish water environment reduces the strength of purifying selection at OXPHOS genes. Instead, elevated frequency of nonsynonymous polymorphisms in the freshwater environment (Pn/Ps = 0.549 vs. 0.283; Fisher's exact test p = .032) suggested that purifying selection is less efficient in small freshwater populations. This study shows the utility of in silico functional prediction tools in population genetic and evolutionary research in a nonmammalian vertebrate and demonstrates that mitochondrial energy production genes represent a promising system to characterize the demographic, life history and potential habitat‐dependent effects of segregating amino acid variants.  相似文献   

20.
Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high‐resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)‐based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine‐scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late‐maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号