首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the differentiated state, human articular chondrocytes exhibited modestly developed cytoskeletal components, while cells dedifferentiated by serial subcultures in vitro displayed a prominent cytoskeleton. Morphological changes, a well-developed actin cytoskeleton, and the presence of numerous intracellular organelles were characteristic features of the dedifferentiated chondrocyte phenotype. These properties correlated with the expression, biosynthesis, storage, and secretion of the cysteine peptidase, cathepsin B, a marker of the dedifferentiated chondrocyte phenotype and a potent mediator of cartilage catabolism in osteoarthritis. Both the actin cytoskeleton and microtubules were responsible for trafficking of cathepsin B between cellular compartments in chondrocytes. Despite the endosomes and lysosomes storing high amounts of mature cathepsin B, this enzyme could not be visualized in its active form within these organelles. However, enzymatically active cathepsin B was associated with polymerized tubulin, and was no longer detectable after disruption of the microtubules. This enzyme species possibly represents the mature cathepsin B form in transport vesicles, after cleavage of the inhibitory propeptide, on the way to a final target. These results suggest noteworthy parallels between osteoarthritic articular cartilage and the artificially dedifferentiated cell phenotype, including the expression of type I collagen, the expression of cathepsin B, a significant modification of the cytoskeleton, and the formation of abundant secretory vesicles. These similarities justify the use of chondrocyte cultures as models of the behavior of cartilage cells in osteoarthritis.  相似文献   

2.
3.
1. Normal human serum was found to inhibit human cathepsin B1. 2. The major inhibitor present in serum was purified and identified as alpha(2)-macroglobulin. 3. alpha(2)-Macroglobulin was found to bind cathepsin B1 in an approximately 1:1 molar ratio. When bound, the enzyme retained about 50% of its proteolytic activity, and up to 80% of its activity against alpha-N-benzoyl-dl-arginine 2-naphthylamide. 4. Pretreatment of alpha(2)-macroglobulin with cathepsin B1 inactivated by exposure to pH8.5 or iodoacetic acid, in large molar excess, did not prevent the subsequent binding of active enzyme. Active enzyme, once bound, was not protected from inhibition by 1-chloro-4-phenyl-3-tosylamido-l-butan-2-one. 5. Cathepsin B1 was also inhibited by human immunoglobulin G, at high concentration. 6. Because it had been suggested that haptoglobin is responsible for the inhibition of ;cathepsin B' by serum, a method was devised for the selective removal of haptoglobin from mixtures of serum proteins by adsorption on haemoglobin covalently linked to Sepharose. No evidence was obtained that haptoglobin has any inhibitory activity against the enzyme.  相似文献   

4.
Tumour homogenate fractions, isolated by differential centrifugation, were subfractionated by density-gradient centrifugation. Biochemical and electron microscopic analyses revealed that beta-glucuronidase and cathepsin activity were associated with a class (possibly two) of lysosomal particles of density greater than those of mitochondria and the endoplasmic reticulum. Lysosomes sedimented by low g forces were vacuolar, electron-dense, delineated by a unit membrane and about 0.2mum in diameter. beta-Glucuronidase was also apparently associated with ribosomes whereas cathepsin was bound in part to the endoplasmic reticulum. Catalase and glucose 6-phosphatase possessed slightly different density-gradient sedimentation profiles.  相似文献   

5.
Summary The suitability of Z-Arg-Gly-Phe-Phe-Leu-MNA and Z-Arg-Gly-Phe-Phe-Pro-MNA for the assessment of cathepsin D activity was tested in biochemical and histochemical experiments. Substrates were dissolved in dimethylformamide and used at 0.1–0.5 mM in various buffers over a pH range of 3.5–7.4. Homogenates of various rat organs and isolated purified enzymes [cathepsin D from bovine spleen, dipeptidyl peptidase (DPP) I.V from porcine kidney and rat lung] were used as enzyme sources. Pepstatin, di-isopropylfluorophosphate (DFP),p-chloromercuribenzoate,o-phenanthroline and a series of DPP IV inhibitors were used in inhibitor experiments. At pH 3.5 and 5.0, substrates were used in a two-step postcoupling procedure with aminopeptidase M and dipeptidyl peptidase IV as auxiliary enzymes and Fast Blue BB as coupling agent. Results were compared with those obtained with haemoglobin. Above pH 5.0 substrates were used in a one-step postcoupling procedure.Cryostat sections of snap-frozen or cold aldehyde-fixed tissue pieces of various rat organs and biopsies of human jejunal mucosa were used in histochemical experiments. As in biochemical tests a two-step procedure was used in the pH range 3.5–5.0, but Fast Blue B was used in the second step for the simultancous coupling. Above pH 5.0 a onestep simultaneous azo coupling procedure was used with Fast Blue B as coupling agent.At pH 3.5 the hydrolysis rate of both synthetic substrates was about 100 x lower than that of haemoglobin when cathepsin D from bovine spleen was used. The activity was inhibited by pepstatin. With increasing pH the hydrolysis rate of Z-Arg-Gly-Phe-Phe-Pro-MNA increased, while that of Z-Arg-Gly-Phe-Phe-Leu-MNA decreased when organ homogenates were used as enzyme sources. However, the activity was not inhibited by pepstatin. It was inhibited by DFP. The extent of the inhibition with other substances was species and organ dependent. Z-Arg-Gly-Phe-Phe-Pro-MNA was also cleaved by isolated and purified DPP IV of porcine kidney and rat lung and the activity was inhibited by DFP and DPP IV inhibitors.In histochemical experiments the staining obtained with both synthetic substrates at pH 3.5 was weak and rather diffuse, with only slight accentuation or none at all in the lysosomal region of cells. In the pH range 5.5–7.4 a very distinct reaction was observed with Z-Arg-Gly-Phe-Phe-Pro-MNA only. The reaction product was localized in the brush border of enterocytes and of cells of the proximal kidney tubules. Endothelial cells of glomeruli and capillaries of the propria of the human jejunum also displayed a positive reaction. Lymphocytes in the propria of rat small intestine reacted to some extent. The reaction was inhibited by DFP. The extent of the inhibition with other substances varied.Z-Arg-Gly-Phe-Phe-Leu-MNA and Z-Arg-Gly-Phe-Phe-Pro-MNA are not efficient substrates for the assessment of cathepsin D activity. In histochemical studies diffusion artifacts must always be considered. In the pH range 5.5–7.4, Z-Arg-Gly-Phe-Phe-Pro-MNA is cleaved by a serine endopeptidase and by a metalloendopeptidase. It remains to be established whether prolyl endopeptidase or DPP IV (or both) and which metalloendopeptidase are responsible for the cleavage. In the evaluation of enterobiopsies the demonstration of this activity is a sensitive means for the assessment of the state of the brush border.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday.  相似文献   

6.

Background

Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH.

Methods

The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB.

Results

HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB.

Conclusion

In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.  相似文献   

7.
Previous studies have established that mature neutrophils from the peritoneal cavity, blood, and bone marrow of beige (Chédiak-Higashi syndrome) mice essentially lack activities of two lysosomal proteinases: elastase and cathepsin G. There are, however, significant levels of each enzyme in early neutrophil precursors in bone marrow. In the present experiments, it was found that the addition of extracts from mature beige neutrophils to extracts of normal neutrophils or to purified human neutrophil elastase and cathepsin G resulted in a significant inhibition of elastase and cathepsin G G activities. 125I-Labeled human neutrophil elastase formed high molecular mass complexes at 64 and 52 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis when added to beige neutrophil extracts. The molecular masses of the inhibitor-125I-elastase complexes suggested that the molecular masses of the inhibitors are approximately 36 and 24 kDa, respectively. These results were confirmed by gel filtration on Superose 12 under nondenaturing conditions. Cathepsin G was inhibited only by the 36-kDa component. The inhibitors formed a covalent complex with the active sites of elastase and cathepsin G. No inhibitory activity was present in mature neutrophil extracts of genetically normal mice or in extracts of bone marrow of beige mice. These results thus represent an unusual example of an enzyme deficiency state caused by the presence of excess inhibitors. Inactivation of neutrophil elastase and cathepsin G in mature circulating and tissue neutrophils may contribute to the increased susceptibility of Chédiak-Higashi patients to infection.  相似文献   

8.
PurposeTo study the response of the ArcCHECK® device as VMAT and IMRT verification system.MethodsVarious tests analyzing the linearity, the repeatability and the angular dependence of the device response, its dependence with the pulse repetition rate and the leakage losses were performed. The long-term response in dose measurements and the uniformity of the detectors conforming the system were controlled using a statistical process control program. The Elekta Infinity™ 6 and 15 MV photon beams were used.ResultsThe device showed excellent repeatability and linearity. The differences between the responses obtained for any pair of angular incidences were less than 2%. The absorbed dose increased by 3% when the pulse repetition rate varied from 50 to 600 MU/min. Results are in overall agreement with those found in previous works for the ArcCHECK®, in which a reduced number of the device diodes were analyzed, and for the MapCheck®, an older 2D device that used the same diodes. Charge losses were found to be negligible except for some of the diodes of the device. The statistical process control program is a very useful tool to control the correct functioning of the device in the long term.ConclusionsThe results of the analysis carried out indicate that the working and stability conditions of the ArcCHECK® device are adequate for its purpose. The dependence with the pulse repetition rate should be considered when VMAT or similar treatments are evaluated. A control program for the statistical monitoring of the device would be desirable and useful.  相似文献   

9.
Inflammation and damage promote monocyte adhesion to endothelium and cardiovascular disease (CVD). Elevated inflammation and increased monocyte-endothelial cell interactions represent the initial stages of vascular remodeling associated with a multitude of CVDs. Cathepsins are proteases produced by both cell types that degrade elastin and collagen in arterial walls, and are upregulated in CVD. We hypothesized that the inflammatory cytokine tumor necrosis factor alpha (TNFα) and monocyte binding would stimulate cathepsins K and V expression and activity in endothelial cells that may be responsible for initiating local proteolysis during CVD. Confluent human aortic endothelial cells were stimulated with TNFα or THP-1 monocyte co-cultures, and multiplex cathepsin zymography was used to detect changes in levels of active cathepsins K, L, S, and V. Direct monocyte-endothelial cell co-cultures stimulated with TNFα generated maximally observed cathepsin K and V activities compared to either cell type alone (n = 3, p < 0.05) by a c-Jun N-terminal kinase (JNK)-dependent manner. Inhibition of JNK with SP6000125 blocked upregulation of cathepsin K activity by 49 % and cathepsin V by 81 % in endothelial cells. Together, these data show that inflammatory cues and monocyte-endothelial cell interactions upregulate cathepsin activity via JNK signaling axis and identify a new mechanism to target toward slowing the earliest stages of tissue remodeling in CVD.  相似文献   

10.
Lysosomal dysfunction has been implicated both pathologically and genetically in neurodegenerative disorders, such as Alzheimer''s disease and Parkinson''s disease (PD). Lysosomal gene deficiencies cause lysosomal storage disorders, many of which involve neurodegeneration. Heterozygous mutations of some of these genes, such as GBA1, are associated with PD. CTSD is the gene encoding Cathepsin D (CTSD), a lysosomal protein hydrolase, and homozygous CTSD deficiency results in neuronal ceroid-lipofuscinosis, which is characterized by the early onset, progressive neurodegeneration. CTSD deficiency was also associated with deposition of α-synuclein aggregates, the hallmark of PD. However, whether partial deficiency of CTSD has a role in the late onset progressive neurodegenerative disorders, including PD, remains unknown. Here, we generated cell lines harboring heterozygous nonsense mutations in CTSD with genomic editing using the zinc finger nucleases. Heterozygous mutation in CTSD resulted in partial loss of CTSD activity, leading to reduced lysosomal activity. The CTSD mutation also resulted in increased accumulation of intracellular α-synuclein aggregates and the secretion of the aggregates. When α-synuclein was introduced in the media, internalized α-synuclein aggregates accumulated at higher levels in CTSD+/− cells than in the wild-type cells. Consistent with these results, transcellular transmission of α-synuclein aggregates was increased in CTSD+/− cells. The increased transmission of α-synuclein aggregates sustained during the successive passages of CTSD+/− cells. These results suggest that partial loss of CTSD activity is sufficient to cause a reduction in lysosomal function, which in turn leads to α-synuclein aggregation and propagation of the aggregates.Maintaining protein homeostasis (proteostasis) is crucial in not only maintenance of physiological functions of cells, but survival of cells. Proteostasis is a particularly important issue for the survival of post-mitotic cells, such as neurons, while dividing cells can dilute aged and misfolded proteins during the mitosis process.1, 2 For the clearance of protein burden, cells utilize two major protein degradation systems, ubiquitin proteasome system and lysosomal degradation, the latter degrades endosomal and autophagosomal cargos.3, 4, 5, 6 Dysregulation of ubiquitin proteasome system and lysosome has been shown to cause protein conformational diseases, including neurodegenerative disorders and metabolic disorders.7, 8 Genetic studies have suggested that impairment of lysosomal functions has important roles in the pathogenesis of neurodegenerative diseases. Mutations in ATP13A2, GBA1 and VPS35 have been associated with PD.9, 10, 11, 12 Mutations in progranulin and charged multivesicular body protein 2B (CHMP2B) have been identified as genetic causes of amyotrophic lateral sclerosis and frontotemporal dementia.13, 14, 15 Postmortem brain tissues of neurodegenerative diseases have exhibited deposition of endosomal and autophagic vesicles.16 Therefore, neurodegenerative proteinopathies might be attributed to lysosomal dysfunction.Pathological examinations of patient tissues have exhibited that protein aggregates, such as amyloid beta (Aβ), tau and α-synuclein aggregates, spread to larger brain regions as disease progresses.17 In animal models, intracerebrally injected α-synuclein aggregates could spread into larger brain regions both in α-synuclein transgenic and non-transgenic mice.18, 19, 20, 21 Inoculation of Aβ or tau aggregates into either non-transgenic or transgenic models of AD also exhibited propagation of those aggregates.22, 23, 24, 25, 26, 27, 28 Studies have suggested that cell-to-cell transmission of protein aggregates is the underlying mechanism of the pathological propagation.29, 30Mounting evidence have suggested that lysosomal function is important for the clearance of the transferred aggregates in recipient neurons during cell-to-cell aggregate transmission.31 This has been extensively studied in cell culture models for α-synuclein transmission. Previous studies showed α-synculein aggregates can be internalized and transported through the endolysosomal pathway.32 Lyososomal dysfunction led to increased accumulation of the internalized α-synuclein aggregates, suggesting that the lysosomal activity in recipient cells is critical in the clearance of the transmitted α-synuclein aggregates.32, 33Lysosomal storage diseases (LSDs) are caused by defects in the lysosomal degradation process. Mutations in genes encoding lysosomal catabolic enzymes and transporters manifest excessive deposition of the enzyme substrates in various organs.34 Though different LSDs show different symptoms, most of LSD patients exhibit neurological symptoms such as mental retardation, motor dysfunction and progressive neurodegeneration, as well as specific pathological changes in the nervous system.35, 36 In addition, some of progressive neurodegenerative disorders such as AD, PD and Huntington''s disease also show similar pathological features with LSD: accumulations of endosomal and autophagosomal vesicles and undegraded macromolecules, and inflammatory responses in brain.16Gaucher''s disease (GD) is the most common LSD, which is inherited in an autosomal recessive manner. Homozygous mutations of GBA1 gene, encoding β-glucocerebrosidase 1 (GCase 1), a lysosomal hydrolase, is responsible for GD.37 Evidence has suggested that GD is closely related to PD. Patients with type-1 GD, the most common form of GD, frequently develop parkinsonism.38 Heterozygous carriers of GBA1 mutations are at a higher risk for PD.39, 40 It has been shown that about 75% of Lewy bodies, a pathological hallmark of PD, colocalized with GCase 1 in brains of PD and DLB patients with heterozygous GBA1 mutations.41 These results suggest that lysosomal enzyme deficiency is associated with the development of PD.Cathepsin D (CTSD) is a major lysosomal endopeptidase, which is critical in the degradation of long-lived proteins.42 Genetic and clinical studies have shown that the homozygous deficiency of CTSD results in the early onset, progressive neurodegeneration, such as congenital neuronal ceroid-lipofuscinosis.43 The heterozygous missense mutations in CTSD have been known to cause the early onset motor and visual problems, brain atrophy, and progressive psychomotor symptoms.44 However, the effects of CTSD deficiency on the late onset progressive neurodegenerative disorders, including AD and PD, remain unclear. Nevertheless, it has become clear that CTSD activity is crucial in the degradation of pathogenic protein aggregates.45, 46Herein, we generated a cell line with a heterozygous nonsense mutation in CTSD and investigated the roles of the CTSD activity in lysosomal function, α-synuclein aggregation and transcellular transmission of α-synuclein aggregates.  相似文献   

11.
The identification of the presence of genotype by environment interaction effects on important traits in Holstein cattle allows for the use of international genetic evaluations and a more efficient design of regional genetic evaluation programmes. The aim of this study was to determine the genotype × environment interaction effects in Chilean Holstein dairy cattle through the analysis of records corresponding to calvings between 1998 and 2015. Herds were classified in the central and southern regions of Chile based on herd location as well as by high and low levels of production environments based on the fat plus protein yield averages per herd within each region. The central region has a Mediterranean climate and a confined production system while the southern region has a humid temperate climate and a production system based on grazing with supplementation. Traits studied were milk yield (MY), fat yield (FY), protein yield (PY), fat content (FC) and protein content (PC) by lactation, age at first calving (AFC) and calving interval (CI). Several four-trait mixed animal models were applied to environmental category data as different traits, which included herd-year-calving season (herd-year-birth season for AFC) and lactation number as fixed effects, and animal additive genetic, sire-herd, permanent environment and residual effects as random effects. Genetic correlations (rg) for MY, FY, FC, PC and CI were found to decrease as differences between environmental categories increased. The rg between the most extreme environmental categories considered in this study for AFC (0.26) was the only one found statistically lower than 0.60. Genetic correlation values statistically lower than 0.80 (P < 0.05) were observed for AFC, CI, MY, FY and PY between some environmental categories. If separate genetic evaluations are adopted as practical criteria when the value of rg is lower than 0.60, the consequence of improving a multi-trait economic breeding objective in this population is likely to be small unless extreme environmental categories are considered. However, a moderate decrease in selection response and re-ranking of selection candidates is expected for AFC, CI and yield traits when selection is performed in different environmental conditions. Genotype × environment interaction effects involving production systems in a Mediterranean climate and confinement vs. Temperate Oceanic climate and grazing with supplementation, and between two fat plus protein yield level categories within each environment, were at most moderate for the studied traits.  相似文献   

12.
Overexpression of transforming growth factor β1 (TGF-β1) has been linked to immune suppression, tumor angiogenesis, tumor cell migration, tumor cell survival, and tumor cell invasion in many cancers. In the present study, we found abundant expression of TGF-β1 in the microenvironment of four different pathological types of meningioma tumors. TGF-β1 induced invasion in malignant meningioma cells with an associated upregulation of urokinase-type plasminogen activator (uPA), uPAR, cathepsin B, and MMP-9, and this increase in proliferation was coupled with the expression of anti-apoptotic and pro-survival signaling molecules. In addition to the intense immunoreactivity of meningioma tumors to X-linked inhibitor to apoptosis (XIAP), its knockdown abolished the TGF-β1-induced proliferation of these cells. The stimulation of XIAP expression and the activation of pSMAD-2 is mediated by phosphatidylinositol 3-kinase (PI3K)- and MEK-dependent pathways, and the addition of anti-TGF-β1 antibodies prevented their expression with a consequent decrease in invasion. Bicistronic shRNA constructs targeting uPAR and cathepsin B (pUC) quenched TGF-β1-driven invasion and survival of meningioma cells by downregulation of XIAP and pSMAD-2 expression. Animal models with intracranial tumors showed elevated levels of TGF-β1, XIAP and pSMAD-2, and pUC treatment prevented this increased expression. Thus, targeted silencing of TGF-β1-induced signaling by pUC in meningioma would provide new treatment approaches for management of meningioma.  相似文献   

13.
The cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with immunostimulant properties. The standard methodologies described for its extraction involve acid and alkaline washings, which degrade part of its glucose chains and reduce the final yield. In the present study, an optimized methodology for extraction of β-d-glucan from S. cerevisiae cells, involving sonication and enzyme treatment, with a yield of 11.08 ± 0.19%, was developed. The high-purity (1  3)(1  6)-β-d-glucan was derivatized to carboxymethyl-glucan (CM-G). In vitro tests with CM-G in Chinese hamster epithelial cells (CHO-k1) did not reveal any cytotoxic or genotoxic effects or influences of this molecule on cell viability. The method described here is a convenient alternative for the extraction of (1  3)(1  6)-β-d-glucan under mild conditions without the generation of wastes that could be potentially harmful to the environment.  相似文献   

14.
The c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively. While improvements in the purification of large quantities of active JNKs have recently been made, inadequacies in their yield, purity, and the efficiency of their phosphorylation still exist. We describe a novel and robust method that further improves upon the purification of large yields of highly pure, phosphorylated JNK1β1, which is most suitable for biochemical and biophysical characterization. Codon harmonization of the JNK1β1 gene was used as a precautionary measure toward increasing the soluble overexpression of the kinase. While JNK1β1 and its substrate ATF2 were both purified to >99% purity as GST fusion proteins using GSH-agarose affinity chromatography and each cleaved from GST using thrombin, constitutively-active MEKK-C and inactive MKK4 were separately expressed in E. coli as thioredoxin-His6-tagged proteins and purified using urea refolding and Ni2+-IMAC, respectively. Activation of JNK1β1 was then achieved by successfully reconstituting the JNK MAPK activation cascade in vitro; MEKK-C was used to activate MKK4, which in turn was used to efficiently phosphorylate and activate large quantities of JNK1β1. Activated JNK1β1 was thereafter able to phosphorylate ATF2 with high catalytic efficiency.  相似文献   

15.

Introduction  

Cathepsin K is a recently discovered cysteine protease which cleaves the triple helical domains of type I to II collagen. It has been shown to be up-regulated in synovial tissue from osteoarthritic and rheumatoid patients, and is a component in normal and nonarthritic cartilage, where it increases with aging. Studies on heart valve development have recently shown that receptor activator of nuclear factor-κB ligand (RANKL) acts during valve remodeling to promote cathepsin K expression. Since extracellular matrix remodeling is a critical component of disc structure and biomechanical function, we hypothesized that cathepsin K and RANKL may be present in the human intervertebral disc.  相似文献   

16.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel®. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel®. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145.  相似文献   

17.
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

18.
《Cellular signalling》2014,26(12):2826-2833
Eight paralogue members form the family of transmembrane channel-like (TMC) proteins that share considerable sequence homology to anoctamin 1 (Ano1, TMEM16A). Ano1 is a Ca2 + activated Cl channel that is related to head and neck cancer, often caused by human papilloma virus (HPV) infection. Mutations in TMC 6 and 8 (EVER1, EVER2) cause epidermodysplasia verruciformis. This rare skin disease is characterized by abnormal susceptibility to HPV infection and cancer. We found that in contrast to Ano1 the common paralogues TMC4–TMC8 did not produce Ca2 + activated Cl currents when expressed in HEK293 cells. On the contrary, TMC8 was found to be localized in the endoplasmic reticulum (ER), where it inhibited receptor mediated Ca2 + release, activation of Ano1 and volume regulated LRRC8-related Cl currents. Zn2 + is co-released from the ER together with Ca2 + and thereby further augments Ca2 + store release. Because TMC8 is required to lower cytosolic Zn2 + concentrations by the Zn2 + transporter ZnT-1, we hypothesize that HPV infections and cancer caused by mutations in TMC8 are related to upregulated Zn2 +/Ca2 + signaling and activation of Ano1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号