首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ma  Qifu  Longnecker  Nancy  Atkins  Craig 《Plant and Soil》2002,239(1):79-85
Narrow-leafed lupin (Lupinus angustifolius L.) is usually grown in sandy, acidic and phosphorus (P) deficient soil with low yield and variable harvest index. This study aimed to examine the effects of varying P supply on lupin growth, seed yield and harvest index. Non-abscission plants (cv. Danja) were grown in Lancelin sand at seven rates of P supply (5, 10, 15, 20, 25, 30 or 40 mg kg–1) in a naturally-lit glasshouse. The rate of leaf emergence, flowering time and flower number were decreased or delayed by low P supply (5, 10 or 15 mg kg–1), with no differences at P rates higher than 20 mg kg–1. High P supply (25, 30 or 40 mg kg–1) increased plant seed yield and harvest index largely by increasing the number of pods and consequently yield on the lateral branches, but had less effect on the number of seeds per pod and seed size. Seed yield and seed P concentration continued to increase up to 40 mg P kg–1but harvest index plateaued at 25 mg P kg–1, indicating that low P supply decreased reproductive growth more than vegetative growth in narrow-leafed lupin.  相似文献   

2.
This study examined whether increased K supply in conjunction with BAPcould increase lupin seed yield and harvest index by enlarging sink volume (podnumber), increasing assimilate and improving assimilate partitioning to filltheadditional pods induced by BAP treatment. Narrow-leafed lupin(Lupinusangustifolius, cv. Danja abs mutant) was grown inaglasshouse, in pots containing sandy soil with four K treatments (0, 15, 60 and120 mg K/kg soil). BAP (2 mM) was applied daily toallmain stem flowers throughout the life of each flower from opening to senesced.BAP application did not affect assimilate production (as measured by totalabove-ground biomass), but changed assimilate partitioning. On BAP-treatedplants, there were greater proportions of seed to pod wall dry weight on themain stem but smaller proportions on the branches, and an increased weightratioof seed to pod wall overall which meant more assimilate was used for seedgrowthrather than pod wall growth. BAP increased the number of pods per plant by35% and this more than compensated for the decreases in seeds per podandseed weight. Therefore, there was an increased harvest index (+11%)and seed yield per plant (+13%) in BAP-treated plants. BAP alsoincreased the number of pods with filled seeds (146%) on the main stemand main stem seed K+ concentration (from 0.81% to0.87%). Added K increased biomass but only slightly affected assimilatepartitioning. As applied K increased, relatively more assimilate was used forpod wall growth rather than seed growth. Added K increased seed yield per plantby about 14% due to increases in seed weight and the number of pods onthe main stem. Moreover, K+ concentration in seeds and shootsincreased with increasing level of applied K. Seed yield was enhanced more byBAP when K was supplied at high levels. Increasing K supply interactedpositively with added BAP by increasing narrow-leaf lupin seed yield andharvestindex through increases in assimilate supply and its partitioning into seeds.  相似文献   

3.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   

4.
Crosbie  Julie  Longnecker  Nancy  Davies  Fleur  Robson  Alan 《Plant and Soil》1993,(1):449-452
Seed of narrow-leafed lupin (Lupinus angustifolius L.) produced in Western Australia often has low manganese (Mn) concentration because of low Mn availability in the soil during grain filling. A major problem of lupin production is poor seedling establishment. We tested the hypothesis that low Mn concentration in lupin seeds decreases emergence.The experiment was a factorial design comparing emergence of lupins (cv. Gungurru) grown under glasshouse conditions from seed with 2 different internal Mn concentrations (7 or 35 mg Mn kg–1 DW) and with 2 external Mn fertiliser treatments (0 or 10 mg MnSO4.H2O kg–1 soil). There were no visible differences between the seeds. Emergence was monitored and plants were harvested 17 days after sowing.Emergence was approximately 60% in all pots sown with low Mn compared to 100% in pots sown with high Mn seed. Application of Mn did not increase the final emergence of low Mn seed. Seed viability was assessed by staining with tetrazolium chloride, a common test used in seed testing laboratories. All high Mn seed were viable while 34% of low Mn seed were completely or partly unstained and therefore were non-viable. We have shown that low Mn supply during seed filling may lead to production of non-viable seed that cannot be visually distinguished from viable seed..  相似文献   

5.
Availability of fluoride to plants grown in contaminated soils   总被引:11,自引:0,他引:11  
Two pot experiments were carried out to study uptake of fluoride (F) in clover and grasses from soil. Fluoride concentrations in t Trifolium repens (white clover) and t Lolium multiflorium (ryegrass) were highly correlated with the amounts of H2O– and 0.01 t M CaCl2–extractable F in soil when increasing amounts of NaF were added to two uncontaminated soils (r=0.95–0.98, t p<0.001). The amounts of H2O– or 0.01 t M CaCl2–extractable F did not explain the F concentrations to a similar extent in t Agrostis capillaris (common bent) grown in 12 soils (Cambic Arenosols) collected from areas around the Al smelters at Å: rdal and Sunndal in Western Norway (r=0.68–0.78). This may be due to variation in soil pH and other soil properties in the 12 soils. Soil extraction with 1 t M HCl did not estimate plant–available F in the soil as well as extraction with H2O or 0.01 t M CaCl2. Fluoride and Al concentrations in the plant material were positively correlated in most cases. Fluoride and Ca concentrations in the plant material were negatively correlated in the first experiment. No consistent effects were found on the K or Mg concentrations in the plant material. The F accumulation in clover was higher than in the grasses. The uptake from soil by grasses was relatively low compared to the possible uptake from air around the Al smelters. The uptake of F in common bent did not exceed the recommended limit for F contents in pasture grass (30 mg kg–1) from soil with 0.5–28 mg F(H2O) kg–1 soil. The concentration in ryegrass was about 50 mg F kg–1 when grown in a highly polluted soil (28 mg F(H2O) kg–1 soil). Concentrations in clover exceeded 30 mg F kg–1 even in moderately polluted soil (1.3–7 mg F(H2O) kg–1 soil). Liming resulted in slightly lower F concentrations in the plant material.  相似文献   

6.
The experiment was set up to examine the influence of different nitrogen forms: (NH4)2SO4, Ca(NO3)2 or NH4NO3 on growth response, root induced pH changes in the rhizosphere, root-borne acid phosphatase activity in strawberry plants cv. Senga Sengana. The plants grown on sandy mineral soil were fertilized with 3 forms of nitrogen, in concentrations of 46 mg N·kg−1 soil. The plants were grown in rhizoboxes with removable plexiglass lids. To ensure the root growth along the plexiglass lids, the rhizoboxes were placed at an angle of about 50° with the lid on the lower side. In case of ammonium supply, the nitrification inhibitor DIDIN was added (10 mg·kg−1 of moist soil) to prevent conversion of ammonium into nitrate. The growth response (roots and shoots) of strawberry plants were determined after 11 weeks of treatment with different N forms. The best development of the root system and shoots (root and shoot dry weight and root length) was obtained, when ammonium nitrate was supplied. It is suggested therefore, that NH4NO3 stimulates vegetative growth of strawberry plants cv. Senga Sengana. However, there were no statistical differences in a leaf and flower number of the plants grown under different forms of N-fertilization. Determination of rhizosphere pH, and acid phosphatase activity were executed using non-destructive techniques, which enabled weekly measurement of chemical changes in the rhizosphere. The results revealed that the form of nitrogen supplied had a predominant effect on chemical changes in the rhizosphere of strawberry plants. The highest pH values (average pH 6.8) were measured in the rhizosphere of individual plants supplied with Ca(NO3)2. Whereas the lowest pH values (average pH 5.8) were detected in the presence of (NH4)2SO4. The curve of rhizosphere pH measured along individual roots of the plants treated with Ca(NO3)2 represents the highest pH values whereas the curve of rhizosphere pH under (NH4)2SO4 treatment had the lowest pH values. The highest activity of acid phosphatase were observed in the rhizosphere of strawberry plants grown in the presence of (NH4)2SO4, at pH 5.8.  相似文献   

7.
In 1986 in Western Australia, cucumber mosaic virus (CMV) infection was widespread in breeders' selections of narrow-leafed lupin (Lupinus angustifolius), and in collections of lupin cvs and wild L. angustifolius lines. When seed of some of these selections and cvs was sown, seed-borne CMV was detected in seedlings. Infection of F1 progenies was traced to use of infected parent plants. CMV was also widespread in 25 seed crops of the new lupin cv. Wandoo but not in 42 seed crops of the new cv. Danja. When samples of the seed sown in 1986 were tested, CMV was detected in 3 - 34% of seedlings of cv. Wandoo but in none of cv. Danja. Following intensive roguing of symptom-bearing plants in the 1986 seed crop of new lupin cv. Gungurru, the level of seedling infection with CMV in seed samples after harvest was 0·1-0·2%. CMV was detected in 6 - 8%, 0·6-5% and 0 - 18% of seedlings from seed samples of established lupin cvs Chittick, Yandee and Illyarrie respectively. Highest levels of seed transmission were in seed from crops grown in high rainfall areas. When a sample of cv. Wandoo seed was graded for size by sieving, CMV was detected in seedlings grown from seed in all grades, but the smallest grade contained the highest level of infection. When seed was collected from pods at different positions on plants in a CMV-infected crop of cv. Illyarrie, seed from primary pods transmitted the virus to seedlings at a 3% rate, seed from first order lateral pods at 8% while seed from second and third order lateral pods transmitted at 13%. Examination of CMV-infected lupin crops indicated that seed-infected plants competed poorly and tended to be shaded out in dense crops but to survive in sparse crops. In 1987 during drought conditions after seeding, plant mortality was greater with seed-infected seedlings than with healthy seedlings despite wide plant spacing. An isolate of CMV from subterranean clover (Trifolium subterraneum) induced severer symptoms in lupins than four isolates from lupin; only the subterranean clover isolate prevented seed production. In tests at one lupin breeding site, CMV was found in 15 species of weeds and volunteer legumes. Fumaria officinalis, Stachys arvensis and volunteer lupins were most frequently infected.  相似文献   

8.
Aluminium (Al) tolerance of fourteen white clover (Trifolium repens L.) cultivars from eleven countries was compared in the greenhouse in the Wainui silt loam (Typic Dystrochrept) to which Al had been added at nine levels (0, 2.5, 5, 20, 50, 150, 250, 500 and 750 mg kg−1 of soil) as Al2 (SO4)3 and incubated for 30 days. None of the white clover cultivars, including those either referred to as Al-tolerant, Dusi and Pathfinder, or from countries that have large areas of acid soils, El Lucero M.A.G., Bayucua, Bage and Zapican, showed greater Al-tolerance than ‘Grasslands Huia’ white clover. Subsequent screening for Al-tolerance can therefore be restricted to germplasm with wide agronomic adaptation.  相似文献   

9.
Two experiments were conducted in a factorial combination of three Zn levels (0, 10 and 40 mg Zn kg-1 soil) and two P levels (0 and 200 mg P kg-1 soil). Experiment 1 was carried out during winter in a heated glasshouse, and experiment 2 during summer under a rain shelter. Plants of dwarf bean (Phaseolus vulgaris L., cv. Borlotto nano) were grown in pots filled with sandy soil. In both experiments, leaf Zn concentration was reduced by the addition of P to plants grown at low Zn supply. However, leaf Zn concentration lower than the critical level was observed only during experiment 2, and the main effects of low Zn were reductions of internode length, light use efficiency and maximum photosynthetic rate. In plants with leaf Zn concentration lower than the critical level, saturating irradiance levels fell from 1000 μmol m-2 s-1 PPFD to 300–400 μmol m-2 s-1 PPFD. Reduction of net photosynthesis was observed from the beginning of flowering and led to decreased seed production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Sadana  U.S.  Claassen  N. 《Plant and Soil》2000,218(1-2):233-238
Understanding of the mechanisms of Mn supply from the soil and uptake by the plants can be improved by using simulation models that are based on basic principles. For this, a pot culture experiment was conducted with a sandy clay loam soil to measure Mn uptake by summer wheat (Triticum aestivum L. cv. Planet), maize (Zea mays L. cv. Pirat) and sugar beet (Beta vulgaris L. cv. Orbis) and to simulate Mn dynamics in the rhizosphere by means of a mechanistic model. Seeds of three crops were sown in pots containing 2.9 kg soil in a controlled growth chamber. Root and shoot weight, Mn content of plants, root length and root radius were determined 8 (13 days in case of sugar beet) and 20 days after germination. Soil and plant parameters were determined to run nutrient uptake model calculations. Manganese content of the shoot varied from 25 mg kg-1 for sugar beet to 34 mg kg-1 for maize. Sugar beet had the lowest root length/shoot weight ratio but the highest relative shoot growth rate, resulting in the highest shoot demand on the root. This is reflected by the Mn influx which was 0.9 × 10-7, 1.7 × 10-7 and 2.5 × 10-7 nmol cm-1 s-1 for wheat, maize and sugar beet, respectively. Nutrient uptake model calculations predicted similar influx values. Initial Mn concentration of 0.2 μM in the soil solution decreased to only 0.16 μM for wheat, 0.13 μM for maize and 0.11 μM for sugar beet at the root surface. This shows that manganese transport to the root was not a limiting step. This was confirmed by the fact that an assumed 20 times increase in maximum influx (Imax) increased the calculated Mn influx by 3.7 times. Sensitivity analysis demonstrated that for controlling Mn uptake the initial soil solution concentration (C Li), the root radius (r0), Imax and the Michaelis constant (K m) were the most sensitive factors in the listed order. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Phosphorus (P) loss from land can impair surface water quality. Losses can occur from soil and plant components. While it is known that P losses increase with soil P concentration, it is not known how losses from pasture plants vary with soil P concentration or between different forages. We examined total P and filterable reactive P (FRP) in water extracts of plant shoots, used as a measure of potential P loss to surface runoff, in different forage species relative to soil P concentration in field trials and a glasshouse experiment. The mean total P concentration of 16 forage species in grazed field plots was greater (P?<?0.01; LSD05?=?117 mg kg?1) in legumes (3,480 mg kg?1) than for grasses (3,210 mg kg?1). Total plant P concentrations of grasses and legumes increased with soil Mehlich-3 P concentrations in both glasshouse and field trials with concentrations close to 6,000 mg kg?1 in arrowleaf clover at 680 mg kg?1 Mehlich-3 soil P. FRP in water extracts of plant shoots increased relative to plant total P as soil Mehlich-3 P increased, with the greatest concentrations shown by crimson clover and arrowleaf clover. Analysis of water extracts of ryegrass and clover herbage from a field trial showed that while FRP was increasing, phytase-available-P decreased significantly from about 70% of filterable unreactive P at the lowest Mehlich-3 P concentrations, to close to zero at 200 mg kg?1 Mehlich-3 P. The wide variation, and enrichment of FRP in water extracts and total P with increasing Mehlich-3 P among species, indicates that cultivar and site selection and sward management provide a potential option to mitigate P loss to surface waters.  相似文献   

12.
Effects of zinc [0 and 5.0 mg Zn kg−1 (soil)] on photosynthetic rate (PN), and chlorophyll fluorescence in leaves of maize (Zea mays L.) cv. Zhongdan 9409 seedlings grown under different soil moisture regimes (40–45 % and 70–75 % of soil saturated water content) were studied. Zn application did not enhance maize plant adaptation to drought stress. The relative water content and the water potential of leaves were not affected by Zn treatment. Moreover, The PN of drought-stressed plants was not improved by Zn supply. The increases of plant biomass, stomatal conductance and quantum yield of photosystem 2 due to Zn addition were notable in well-watered plants.  相似文献   

13.
The increase in alkalinity and SO4 2? in softwater lakes can negatively affect pristine isoetid population because the increase in alkalinity and SO4 2? can stimulate sediment mineralization and consequently cause anoxia. The consequences of increased sediment mineralization depend on the ability of isoetids such as Lobelia dortmanna to oxidize the rhizosphere via radial O2 loss. To study how alkalinity and SO4 2? affect the isoetid L. dortmanna, and if negative effects could be alleviated by neighboring plants, three densities of L. dortmanna (“Low”?=?64 plants m?2, “Medium”?=?256 plants m?2 and “High”?=?1,024 plants m?2) were exposed to elevated alkalinity in the water column, or a combination of both elevated alkalinity and SO4 2?, and compared to a control situation. The combination of SO4 2? and alkalinity significantly increased mortality, lowered areal biomass and reduced actual photosynthetic efficiency. Plant density did not significantly alleviate the negative effects caused by SO4 2? and alkalinity. However, actual photosynthetic efficiency was significantly positively correlated to redox potential in the sediment, indicating a positive relationship between plant performance and sediment oxidation. The negative effects on L. dortmanna were probably caused by long periods of tissue anoxia by itself or in combination with H2S intrusion. Therefore, increase in both SO4 2? and alkalinity surface water can dramatically affect L. dortmanna populations, causing reduction or even disappearance of this icon species.  相似文献   

14.

This experiment was carried out in pots in a greenhouse to evaluate the effects of arbuscular mycorrhizal fungi (Funneliformis mosseae, Rhizophagus intraradices and Rhizophagus fasciculatus) on carob plant performance under different levels of phosphate fertilization. Non-mycorrhizal (NMyc) and mycorrhizal (Myc) carob plants were subjected to three levels of phosphate fertilization, L1 (0 mg P kg−1 soil), L2 (25 mg P kg−1 soil) and L3 (100 mg P kg−1 soil). Results showed that under L1 and L2 P-fertilization levels, arbuscular mycorrhizal symbiosis significantly improved growth and biomass production of carob plants. Moreover, mineral nutrient (P, K, Na and Ca) acquisition, photosynthetic activity (Fv/Fm), stomatal conductance, total chlorophyll content, and soluble sugar accumulation were also strongly improved in Myc plants in comparison with NMyc ones. Under L1 P-fertilization level, Myc plants showed strongly increased acid phosphatase activity in roots and in the rhizospheric soil than NMyc plants. Furthermore, Myc plants maintained high membrane integrity (over 80%) and low hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, associated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (G-POD), and catalase (CAT) compared to NMyc plants. However, high phosphorus input (L3) negatively affected root colonization and mycorrhizal plant performance. Thus, carob plants associated with Funneliformis mosseae performed best under phosphorus deficiency and were the least sensitive to the variations of phosphorus input levels.

  相似文献   

15.
In pot experiments with Solanum tuberosum L. (cv Saturna) the application of KCl as compared to K2SO4 delayed tuber development. The solute composition of leaves of the KCl treated plants was significantly lower in K+ and NO3 -, but higher in Mg2+, Ca2+ and Cl-. Since the solute potential in the KCl treated plants was more negative and associated with a higher water content, a higher turgor pressure can be assumed. This could explain the enhanced shoot growth observed with KCl. Application of K2SO4, on the other hand, accelerated the development of tubers. This might result from a less competitive shoot sink in K2SO4 treated plants and a stimulated phloem loading and translocation of assimilates by higher concentrations of leaf-K.  相似文献   

16.

Aims

Water use efficiency (WUE) of crop plants is an important plant trait for maintaining high yield in water limited areas. By influencing osmoregulation of plants, potassium (K) plays a critical role in stress avoidance and adaptation. However, whole plant physiological mechanisms modulated by K supply in respect of plant drought tolerance and water use efficiency are not well understood. In the present study, growth, development and transpiration dynamics of two barley cultivars were evaluated with and without PEG-induced osmotic stress using an automated balance system and image based leaf area determination.

Methods

Experiments were conducted to study the effects of varied K supply under different osmotic stress treatments on a wide range of morphological, biochemical and physiological characteristics of barley plants such as leaf area development, daily whole plant transpiration rate (DTR), stomatal conductance (gs), assimilation rate (AN), biomass and leaf water use efficiency (WUE) as well as foliar abscisic acid (ABA) concentrations. Two barley cultivars (cv. Sahin-91 and cv. Milford) were treated with two K supply levels (0.04 and 0.8 mM K) and osmotic stress induced by polyethylene glycol 6000 (PEG) for a period of 9 days (in total 48 days experiment) in the hydroponic plant culture (non-PEG and + 20% PEG ).

Results

Without PEG, low-K supply depressed dry matter (DM) by almost 60% averaged across both cultivars. Under osmotic stress (+PEG), total leaf area was reduced by almost 70% in low-K compared to adequate-K plants. Low K concentration under PEG stress was correlated with higher ABA concentration and was correlated with lower leaf- and whole plant transpiration rate. Biomass-WUE under low K supply decreased significantly in both barley cultivars, to a greater extent in cv. Milford under osmotic stress. However, leaf-WUE was not affected by K supply in the absence of osmotic stress.

Conclusions

It was suggested that reduced biomass-WUE in low-K treated barley plants was not related to inefficient stomatal control under K deficiency, but instead due to reduced assimilation rate. It was further hypothesized that under low K supply, a number of energy consuming activities reduce biomass-WUE, which are not distinguished by measuring leaf-WUE. This study showed that low K supply under osmotic stress increases foliar ABA concentration thereby decreasing plant transpiration.
  相似文献   

17.
A rhizobox experiment was conducted to examine the P acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P-deficient conditions. We aimed to identify whether cotton is physiologically efficient at acquiring P through release of protons, phosphatases or carboxylates. Plants were pre-grown in the upper compartment of rhizoboxes filled with a sand and soil mixture to create a dense root mat against a 53 μm polyester mesh. For each species, two P treatments (0 and 20 mg P kg?1) were applied to the upper compartment in order to create P-deficient and P-sufficient plants. At harvest, the upper compartment with intact plants was used for collection of root exudates while the lower soil compartment was sliced into thin layers (1 mm) parallel to the rhizoplane. Noticeable carboxylates release was only detected for white lupin. All P-deficient plants showed a capacity to acidify their rhizosphere soil to a distance of 3 mm. The activity of acid phosphatase was significantly enhanced in the soil-root interfaces of P-stressed cotton and wheat. Under P-deficient conditions, the P depletion zone of cotton from the lower soil compartment was narrowest (<2 mm) among the species. Phosphorus fractionation of the rhizosphere soil showed that P utilized by cotton mainly come from NaHCO3–Pi and NaOH–Po pools while wheat and white lupin markedly depleted NaHCO3–Pi and HCl–P pools, and the depletion zone extended to 3 mm. Wheat also depleted NaOH–Po to a significant level irrespective of P supply. The study suggests that acquisition of soil P is enhanced through P mobilization by root exudates for white lupin, and possibly proton release and extensive roots for wheat under P deficiency. In contrast, the P acquisition of cotton was associated with increased activity of phosphatases in rhizosphere soil.  相似文献   

18.
淋洗与植物作用耦合对盐渍化土壤的改良效应   总被引:2,自引:0,他引:2  
唐让云  曹靖  董放  董利苹  孔晓乐 《生态学报》2015,35(17):5686-5694
以甘肃秦王川引大灌区盐渍化土壤为背景,以当地5种耐盐植物为材料,采用根袋法盆栽试验动态研究了淋洗结合植物种植对盐渍化土壤改良的效应。结果表明:与种前相比,单纯的淋洗作用对土壤pH值影响不大,而淋洗结合植物种植明显降低了土壤pH值,且根际土壤pH值小于非根际土壤的,5种耐盐植物中霸王根际土壤pH值降低幅度最大,达0.6个单位。K+、Ca2+、Na+、Mg2+、Cl-和SO2-4在5种植物根际土壤中均有不同程度的富集,富集程度因物种的不同而不同,随培养时间的延长而呈波动状态。5种供试植物和对照组土壤中的6种主要的可溶性盐分离子随淋洗次数和培养时间的延长呈下降趋势。在培养120d后,单纯淋洗的土壤中K+、Ca2+、Na+、Mg2+、Cl-和SO2-4的含量相比种前平均分别降低了33.3%、26.1%、35.6%、32.5%、35.5%和36.3%,植物吸收带走的上述各离子的含量平均分别占种前的46.2%、8.1%、30.2%、7.2%和21.6%,其中霸王吸收带走的盐分离子最多,而淋洗结合种植植物的土壤中上述各离子的含量与种前相比平均分别降低了67.25%、63.73%、83.8%、67.5%、81.55%和78.46%,由此可见,淋洗结合植物种植的脱盐效果优于单纯淋洗,且土壤中主要的盐分离子Na+、Cl-和SO2-4的含量降低幅度最大,通过计算得出,在Cl-、SO2-4和Na+减少的总量中还有37.73%的Na+、38.22%的Cl-和35.14%的SO2-4的减少量是由植物根系的物理化学作用机制引起的。  相似文献   

19.
Yao  Yasuko  Yoneyama  Tadakatsu  Hayashi  Hiroaki 《Plant and Soil》2003,249(2):279-286
Fused potassium silicate (FPS), which contains K2Ca2Si2O7, has been prepared as a slow-releasing potassium fertilizer. Moreover, it is difficult to estimate the proportion of nutrients utilized by plants that come from the soil versus the slow-releasing fertilizer applied. To trace the uptake of potassium (K) by plants from FPS supplied to the soil, the fertilizer K was partially replaced with rubidium (Rb). The growth and K+Rb uptake (moles) of Chinese cabbage (Brassica pekinensis Rupy. cv. Kekkyu) plants in sand culture experiments were not affected by the replacement of K with Rb. In pot experiments using a volcanic ash Ando soil, Chinese cabbage was grown with no application of K, with K and Rb salts, or with Rb-containing FPS for three cycles of 40 days each. The amounts of fertilizer-derived K in the shoots estimated by the Rb-tracer method were smaller than those estimated by the difference of K accumulation between K fertilized and unfertilized plants. Such result suggests the involvement of `K priming', a process by which the addition of K fertilizers enhances plant K uptake from the soil. The amount of K absorbed from FPS, calculated by the Rb-tracer method, indicated that the sparingly soluble K, that is soluble in 0.2 g L–1 citric acid solution but not in water, was absorbed at least partly through direct contact with the roots without prior exchange with soil K. Moreover, the plant absorption of sparingly soluble K from FPS was also confirmed by the difference method in K uptake.  相似文献   

20.
Abstract Growth of barley (Hordeum vulgare L., cv. Georgie) was insensitive to soil K content above about 150 mg kg?1, but at lower levels it declined. The reduction in yield was greater in soils containing approximately 10 mg Na kg?1 than in soils with about 90 mg kg?1 of Na. Growth was unaffected by changes in shoot K concentration above 75 mol m?3, but declined at lower concentrations, and the decrease was less in plants grown in soils with high Na. Growth responses were not simply related to tissue K concentrations because plants grown in soils with extra Na had higher yields but lower K concentrations. When soil Na was low, plants accumulated Ca as tissue K declined, but when Na was provided this ion was accumulated. Plant Mg concentrations were generally low but increased as K decreased. The Ca and Mg were osmotically active. There were highly significant inverse linear relationships between yield and either the Ca or Mg concentrations in the shoots. X-ray microanalysis was used to examine the compartmentation of cations in leaves from barley plants (cv. Clipper) grown in nutrient solutions with high and low K concentrations. In plants grown with 2.5 mol m?3 K, this was the major cation in both the cytoplasm and vacuole of mesophyll cells. However, in plants grown with 0.02 mol m?3 K it declined to undetectable levels in the vacuole, although it was still detectable in the cytoplasm. In all plants, Ca was mainly located in epidermal cells. The implication of the results for explaining responses to K. in terms of compartmentation of solutes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号