首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
自马槟榔(Capparis masaikai L(?)vl.)种子中分离出一种新的葡糖硫甙硫酸酯,即2-羟乙基葡糖硫甙硫酸酯(2-hydroxyethylglucosinolate),得率为干种仁的3%;在葡糖硫甙酶(pH 6.0)作用下,酶解产物为(口恶)唑烷硫酮(oxazolidine-2-thione)。马槟榔种子中的葡糖硫甙酶用1N氯化纳提取,经硫酸铵沉淀,通过葡聚糖G50凝胶过滤层析和羧甲基纤维素离子交换层析,得到纯制品。测得该酶分子量Mr=116 kD,是由二个相近的亚基组成,等电点pI=5.05。与文献中报道从十字花科植物中提取的葡糖硫甙酶是分子量为140 kD的糖蛋白不同,该酶未检出含糖。  相似文献   

2.
利用植物木质纤维资源发酵产乙醇越来越受到人们的重视,但是要达到工业生产仍然存在很多难题。最近在利用植物基因工程技术改善植物自身性状,以利于能源植物的研究方面取得了一定的进展,这些研究包括减少植物自身细胞壁中的木质素含量、细胞中积累表达纤维素酶和木聚耱酶等的方法,使产生的生物质更利于降解利用。  相似文献   

3.
361.培养大戟细胞制造栎精葡糖甙酸 据欧洲1992年专利记载。栎精葡糖是一种生物可以接受的食品黄色染料。用大戟(Euphorbia milli)细胞培养制成。大戟的无菌叶子碎块培养在含2×10~(-6)M2,4-D的MS培养基中直至形成愈伤组织。 362.用香蜂花种子制造原生质体 据日本1992年专利记载。用香蜂花(Melissaofficinalis)种子制造原生质体比用叶子制造可大大缩短时间。其方法为在含生长素的培养基中培育种子,以诱导愈伤组织,然后用愈伤组织用纤维素酶、果胺酶、远志乳化酶(polygalacturonase)、CaCl_2·2H_2O和糖的混合物制备原生质体。(译者注香蜂花供药用)。  相似文献   

4.
葡糖磷酸变位酶是催化葡糖1磷酸与葡糖6磷酸之间可逆性转化的酶类,在有机体内的糖原合成及利用中起中枢作用。本文综述了葡糖磷酸变位酶在植物中的分布、重要性、功能及分子特性等,重点介绍了关于植物葡糖磷酸变位酶在遗传及分子生物学方面的研究进展和热点,并讨论了研究葡糖磷酸变位酶的理论和实际意义。  相似文献   

5.
目的:从氧化葡糖杆菌H763中克隆sndh-sdh基因簇,在大肠杆菌和氧化葡糖杆菌621H中分别表达山梨酮脱氢酶-山梨糖脱氢酶(SNDH-SDH),并检测其活性。方法与结果:以氧化葡糖杆菌H763基因组DNA为模板,PCR扩增包括启动子、结构基因及终止序列在内的sndh-sdh基因簇,回收3533 bp的扩增产物,连入pMD18T载体,转化至大肠杆菌DH5α中表达;以山梨糖或木糖为底物,DCIP法检测菌体裂解液,DCIP检测液颜色由蓝绿色变为黄色,表明大肠杆菌表达产物具有脱氢酶活性。构建pBBR1MCS2-sndh-sdh载体,通过接合转移导入氧化葡糖杆菌621H,重组葡糖杆菌在以山梨醇或山梨糖为底物的培养基中培养,采用薄层层析检测法检测其培养上清中的代谢产物,层析板上显示了2-酮基-L-古龙酸斑点。结论:重组大肠杆菌DH5α和氧化葡糖杆菌621H中均表达了有脱氢酶活性的SNDH-SDH。  相似文献   

6.
葡糖杆菌属分类及其主要应用的研究进展   总被引:2,自引:0,他引:2  
葡糖杆菌是醋酸菌科的一个重要属,与人类关系密切,该属中部分菌株在维生素C、米格列醇的工业生产及合成中起着重要作用;此外,该属菌株还能氧化葡萄糖生成葡糖酸盐和酮基葡糖酸等工业重要中间体。综述了葡糖杆菌的研究进展,主要介绍了葡糖杆菌的生理生化特征、分类进展及其主要应用,可以为广大醋酸菌研究者提供参考。  相似文献   

7.
从酶活、底物、产物、应用及空间结构等方面论述了葡糖淀粉酶的一般生物学特性及应用,分析了其不同来源的基因同源度。着重从分子生物学角度阐述了葡糖淀粉酶基因在多种表达系统中的分泌表达情况,并对其基因在曲霉及酵母中的高效表达及分泌引导功能进行了初步阐述和探讨。  相似文献   

8.
葡糖磷酸变位酶是催化葡糖-1-磷酸与葡糖-6-磷酸之间可逆性转化的酶类,在有机体内的糖原合成及利用中起中枢作用。本文综述了葡糖磷酸变位酶在植物中的分布、重要性、功能及分子特性等,重点介绍了关于植物葡糖磷酸变位酶在遗传及分子生物学方面的研究进展和热点,并讨论了研究葡糖磷酸变位酶的理论和实际意义。  相似文献   

9.
目的:对1株产细菌纤维素的菌株Axy-I进行鉴定,并对其在不同培养条件下的产物进行分析。方法:通过生理生化检测和16S rDNA序列分析,对菌株Axy-I进行鉴定;比较静态培养和摇瓶动态培养7d后所产细菌纤维素的产率,并利用扫描电镜观察产物的超微观结构特征。结果:菌株Axy-I的形态、菌落特征和生理生化特性与葡糖酸醋酸杆菌属一致,16S rRNA序列长度为1436bp,与Gluconacetobacter sp.4L(Genbank登录号为:AY741144.1)的同源性达97%。静态培养细菌纤维素得率为4.72g/L,纤维直径82%分布在30-80nm之间,动态培养得率为8.12g/L,纤维直径90%分布在30~70nm之间。结论:菌株Axy-I属于葡糖酸醋酸杆菌属,动态培养所产的细菌纤维素纤维丝比静态更纤细,产率也更高。  相似文献   

10.
鸡冠花种子营养成分的研究   总被引:7,自引:0,他引:7  
鸡冠花种子可供食用和药用。作者采用常规方法系统地分析测定了其营养成分,并和一些谷类,豆类食物进行了比较。结果显示,鸡冠花种子含各种营养成分:蛋白质、脂肪、碳水化合物、膳食纤维、氨基酸、维生素、无机元素等,不仅含量丰富且高于谷类。这为开发利用鸡冠花种子提供了科学依据。  相似文献   

11.
This paper is the first multi-scale characterization of the xyloglucan extracted from seeds of the African tree Afzelia africana Se. Pers. It describes the extraction and characterization of this polysaccharide in terms of both primary monosaccharide and oligosaccharide composition. It also includes a study of the seed morphology. Morphological characterization includes optical, transmission, and scanning electron microscopy. The polysaccharide exists in thickened cell walls of the cotyledonary cells, and the extracted xyloglucan is structurally quite similar to those from tamarind seed and detarium. Nevertheless there are some subtle differences in the fine structure, particularly in the oligomeric xyloglucan composition. The chain flexibility of the polysaccharide is also discussed in the light of our recent measurements reported elsewhere [Biomacromolecules2004, 5, 2384-2391].  相似文献   

12.
The cotyledons of Copaifera langsdorfii Desf, have been shown to contain a water-soluble xyloglucan (amyloid), which represents about 40% of the seed's dry weight. On acid hydrolysis its composition (Glc:Xyl:Gal = 4.0:2.8–2.9:1.5–1.7) was similar to that of the well-characterized xyloglucan of Tamarindus indica L. (Glc:Xyl:Gal = 4.0:3.0–3.1:1.4). On hydrolysis with pure Trichoderma viride cellulase, both C. langsdorfii and T. indica xyloglucan gave the same xyloglucan oligosaccharides: but in significantly different proportions A:B1:B2:C = 1:0.4–0.5:2.1–2.2:3.1–3.4 in T. indica , and 1:1.1:1.8:7.4 and 1:1.3:2.6:12 for C. langsdorfii , savanna and forest populations respectively. This demonstrated a difference in fine molecular structure, notably in the distribution of the terminal non-reducing galactose substituents, between the xyloglucans of the two species and indicated differences in the specificities of their biosynthetic mechanisms. The xyloglucans obtained from C. langsdorfii seeds harvested from savanna and forest environments were slightly different, one from the other, in their sugar-residue composition (Glc:Xyl:Gal = 4.0:2.9:1.5 and 4.0:2.8:1.7, respectively), and were significantly different in the relative proportions of the xyloglucan oligosaccharides released on cellulase hydrolysis (above). Using light microscopy and biochemical methods, no difference in the pattern or rate of postgerminative xyloglucan metabolism was detected in seeds of savanna and forest origin. This is the first clear experimental evidence for differences in a storage xyloglucan structure between populations of the same species. It may indicate environmental influences on xyloglucan biosynthesis.  相似文献   

13.
A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis. cDNA sequences were generated from developing nasturtium (Tropaeolum majus) seeds, which produce large amounts of non-fucosylated xyloglucan as a seed storage polymer. In addition to known xyloglucan biosynthetic genes, a previously uncharacterized putative xyloglucan galactosyltransferase was identified. Analysis of an Arabidopsis thaliana mutant line defective in the corresponding ortholog (AT5G62220) revealed that this gene shows no redundancy with the previously characterized xyloglucan galactosyltransferase, MUR3, but is required for galactosyl-substitution of xyloglucan at a different position. The gene was termed XLT2 for Xyloglucan L-side chain galactosylTransferase position 2. It represents an enzyme in the same subclade of glycosyltransferase family 47 as MUR3. A double mutant defective in both MUR3 (mur3.1) and XLT2 led to an Arabidopsis plant with xyloglucan that consists essentially of only xylosylated glucosyl units, with no further substitutions.  相似文献   

14.
Two xyloglucan fractions have been isolated from the cotyledons of resting white-mustard seeds, the first by extraction with hot EDTA, and the second by subsequent extraction with alkali or lithium thiocyanate. Although both appear to have the ;amyloid' type of structure in which chains of (1-->4)-linked beta-d-glucopyranose residues carry d-xylose-rich side chains through position 6, these side chains are rather different in structure in the two polysaccharide fractions, and the second or ;insoluble' xyloglucan has fewer of them. The side chains in both polysaccharides are also different from those in other seed amyloids, especially in having xylose linked through positions 3 and 4 (instead of through position 2 as usual) and in containing fucose residues. Both polysaccharides show the characteristic blue ;amyloid' colour with iodine in the presence of sodium sulphate, and it is suggested that this arises by the interaction of iodine molecules and possibly iodide ions within the interstices between aggregated xyloglucan chains. ;Soluble' xyloglucan is metabolized during germination and is presumed to have a reserve function. ;Insoluble' xyloglucan is metabolized less completely over the period studied but its lack of turnover during cell-wall differentiation indicates that it also is a reserve. These and other beta-(1-->4)-linked reserve polysaccharides of seeds might also have a structural function which is of particular value for the survival of the dormant seed.  相似文献   

15.
Mature seeds of Tropaeolum majus L. contain the cell wall polysaccharide xyloglucan (amyloid), protein and lipid as storage substances. The transitory occurrence of starch during the process of seed development could be substantiated.[U-14C]-labelled xylose, glucose and glucuronic acid were fed to ripening seeds and the incorporation of radioactivity into xyloglucan, starch and the sugar nucleotide fraction of the cotyledons was determined. The results indicate that exogenous supplied xylose is not incorporated directly into xyloglucan, but is transformed to glucose before incorporation into xyloglucan and starch. Radioactivity from glucuronic acid was predominantly found in the xylose moiety of xyloglucan. Incubation of seeds with [6-14C]-labelled glucose resulted in an incorporation of labelled hexoses into amyloid and starch, whereas xylose residues of amyloid remained unlabelled.Abbreviations p.a. post anthesis - UDP uridine 5-diphosphate - GDP guanosine 5-diphosphate - TLC thin layer chromatography - HPLC high pressure liquid chromatography  相似文献   

16.
The occurrence, localization, and properties of xyloglucan in the cell walls of growing regions of Pinus pinaster hypocotyls have been studied. Xyloglucan was released from the cell wall with alkali solutions, the concentration increasing from 4 through 35%; KOH. In vitro experiments showed that xyloglucan and cellulose can interact, forming a macromolecular complex. Electron microscope observations showed that the cell wall material extracted with 35%; KOH, which contained some amount of xyloglucan, was enough to cover and join the cellulose microfibrils.  相似文献   

17.
18.
Pauly M  Qin Q  Greene H  Albersheim P  Darvill A  York WS 《Planta》2001,212(5-6):842-850
Xyloglucans were isolated by sequential extraction of the cell walls of pea (Pisum sativum L. cv. Alaska) with a xyloglucan-specific endoglucanase and KOH. The xyloglucan content and xyloglucan-oligosaccharide composition were determined for fractions obtained from the elongating and non-elongating segments of pea stems grown in the light and in darkness. The results were consistent with the hypothesis that regulated growth of the cell wall depends on xyloglucan metabolism. Furthermore, the characterization of xyloglucan extracted from leaves of light-grown pea plants indicates that xyloglucan metabolism is tissue specific. Changes in xyloglucan subunit structure observed in elongating stems are consistent with the in muro realization of a metabolic pathway that was previously proposed solely on the basis of the in vitro activities of plant glycosyl hydrolases. Received: 21 May 2000 / Accepted: 7 June 2000  相似文献   

19.
20.
The storage xyloglucan of germinating seeds of Copaifera langsdorffii is degraded by the action of β-galactosidase, endo-β-glucanase, α-xylosidase and β-glucosidase, producing free galactose, glucose and xylose. One of the β-galactosidases from cotyledons of germinating seeds of C. langsdorffii was purified by ion exchange and gel chromatography (Biogel P-60), leading to a single polypeptide (molecular mass 40 kDa). The enzyme has optimum activity at pH 3.2 (stable from pH 2.3 to 6.0) and is active on p-NP-β-gal (Km 3.5 mM) and lactose but not on o-NP-β-gal or p-NP-β-gal. Small amounts of galactose were released from xyloglucan of seeds of C. langsdorffii, Tamarindus indica and less from Hymenaea courbaril. No galactose was released after incubation with β-1,4-linked galactan from Lupinus angustifolius cotyledons. Much higher activity was observed on oligosaccharides obtained by hydrolysis of C. langsdorffii xyloglucan with Trichoderma viride cellulase. The purified β-galactosidase attacked XLLG and XLXG specifically, producing a mixture of XXXG and XXLG (unsubstituted glucose is assigned G; glucose branched with xylose is assigned X and if galactose is branching xylose, the trisaccharide is assigned L). Considering the recent discovery by Crombie and co-workers that (L) at the non-reducing end of the oligosaccharides prevents β-glucosidase from acting on GLXG or GLLG but not on GXLG or GXXG, the β-galactosidase isolated in this work seems to perform a key role in xyloglucan degradation since it is responsible for the retrieval of a major sterical hindrance (L) for further hydrolysis of the oligosaccharides and therefore essential for completion of xyloglucan mobilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号