首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Yeast is an excellent model system of eukaryotes for the study of molecular mechanisms of ATP-binding cassette transporters. Pdr5 protein is a yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Here, we described a novel drug screening system designated to detect compounds that inhibit the function of Pdr5. An indicator strain with increased drug sensitivity was constructed with an ergosterol-deficient background (delta syr1/erg3 null mutation). The sensitivity of the indicator strain (delta syr1/erg3 delta pdr5 delta snq2) to the Pdr5 substrates, cycloheximide and cerulenin, was increased 16-fold and 4-fold against wild type, respectively. The screening system is mainly based on the growth inhibition of the PDR5-overexpressed indicator strain with the combination of a sample and cycloheximide or cerulenin. The effect of an mdr inhibitor, FK506 on the screening system was clearly detected even at a low concentration (approximately 0.5 microg/ml). In addition, accumulation of rhodamine 6G in the cells was detected as a result of Pdr5 inhibition by FK506. These results indicated that the screening system is useful for a sensitive screening of Pdr5-specific inhibitors with low toxicity.  相似文献   

3.
4.
5.
A subset of the family of ATP-binding cassette (ABC) transporters has been in focus owing to their involvement in conferring multidrug resistance in cancer cells and among immune compromised individuals. Saccharomyces cerevisiae is protected against xenobiotics by similar machineries that are part of the pleitropic drug resistance (PDR) network. The ABC transporter Pdr5 is an important member of this PDR network in yeast and is involved in cellular detoxification by the efflux of a wide variety of drugs and substrates. In this review, we focus on the aspects of detergent effects and the degeneracy in conserved sequences that is observed in the nucleotide binding domains of Pdr5 and discuss their functional relevance.  相似文献   

6.
7.
8.
9.
Steroids are known to induce pleiotropic drug resistance states in hemiascomycetes, with tremendous potential consequences for human fungal infections. Our analysis of gene expression in Saccharomyces cerevisiae and Candida albicans cells subjected to three different concentrations of progesterone revealed that their pleiotropic drug resistance (PDR) networks were strikingly sensitive to steroids. In S. cerevisiae, 20 of the Pdr1p/Pdr3p target genes, including PDR3 itself, were rapidly induced by progesterone, which mimics the effects of PDR1 gain-of-function alleles. This unique property allowed us to decipher the respective roles of Pdr1p and Pdr3p in PDR induction and to define functional modules among their target genes. Although the expression profiles of the major PDR transporters encoding genes ScPDR5 and CaCDR1 were similar, the S. cerevisiae global PDR response to progesterone was only partly conserved in C. albicans. In particular, the role of Tac1p, the main C. albicans PDR regulator, in the progesterone response was apparently restricted to five genes. These results suggest that the C. albicans and S. cerevisiae PDR networks, although sharing a conserved core regarding the regulation of membrane properties, have different structures and properties. Additionally, our data indicate that other as yet undiscovered regulators may second Tac1p in the C. albicans drug response.  相似文献   

10.
11.
Guo X  Li J  Wang T  Liu Z  Chen X  Li Y  Gu Z  Mao X  Guan W  Li Y 《PloS one》2012,7(1):e29520
Multidrug resistance protein Pdr5p is a yeast ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance by active efflux of intracellular drugs. However, the highly polymorphic Pdr5p from clinical strain YJM789 loses its ability to expel azole and cyclohexmide. To investigate the role of amino acid changes in this functional change, PDR5 chimeras were constructed by segmental replacement of homologous BY4741 PDR5 fragments. Functions of PDR5 chimeras were evaluated by fluconazole and cycloheximide resistance assays. Their expression, ATPase activity, and efflux efficiency for other substrates were also analyzed. Using multiple lines of evidence, we show that an alanine-to-methionine mutation at position 1352 located in the predicted short intracellular loop 4 significantly contributes to the observed transport deficiency. The degree of impairment is likely correlated to the size of the mutant residue.  相似文献   

12.
13.
14.
15.
ATP-binding cassette (ABC) transporters play important roles in drug efflux, but some may also function in cellular detoxification. The Pdr15p ABC protein is the closest homologue of the multidrug efflux transporter Pdr5p, which mediates pleiotropic drug resistance to hundreds of unrelated compounds. In this study, we show that the plasma membrane protein Pdr15p displays limited drug transport capacity, mediating chloramphenicol and detergent tolerance. Interestingly, Pdr15p becomes most abundant when cells exit the exponential growth phase, whereas its closest homologue, Pdr5p, disappears after exponential growth. Furthermore, in contrast to Pdr5p, Pdr15p is strongly induced by various stress conditions including heat shock, low pH, weak acids, or high osmolarity. PDR15 induction bypasses the Pdr1p/Pdr3p regulators but requires the general stress regulator Msn2p, which directly decorates the stress response elements in the PDR15 promoter. Remarkably, however, Pdr15p induction bypasses upstream components of the high osmolarity glycerol (HOG) pathway including the Hog1p and Pbs2p kinases as well as the dedicated HOG cell surface sensors. Our data provide evidence for a novel upstream branch of the general stress response pathway activating Msn2p. In addition, the results demonstrate a cross-talk between stress response and the pleiotropic drug resistance network.  相似文献   

16.
17.
18.
19.
20.
D Y Kim  W Y Song  Y Y Yang  Y Lee 《FEBS letters》2001,508(1):99-102
PDR13 in Saccharomyces cerevisiae contributes to drug resistance via sequential activation of PDR1 and PDR5. In this study, we found that a PDR13 deletion mutant was hypersensitive to Cu(2+) compared to the wild-type counterpart. The Cu(2+) tolerance mechanism mediated by Pdr13 does not seem to involve Pdr1 or Pdr5, since mutants harboring a deletion of either the PDR1 or PDR5 gene did not show elevated Cu(2+) sensitivity. Instead, we found that the PDR13 null mutant could not express CUP1 or CRS5 metallothionein at wild-type levels when subjected to high Cu(2+) stress. These results suggest that Pdr13 contributes to high Cu(2+) tolerance of S. cerevisiae, at least in part, via a mechanism involving metallothionein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号