首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 659 毫秒
1.
目的:研究土槿皮乙酸对人肾癌细胞A498凋亡的影响,并探讨其内在的分子机制,为肾癌治疗寻找有效的新靶点和新策略。方法:人肾癌细胞A498经10、15μmol/L土槿皮乙酸处理48 h后,用流式细胞仪检测细胞凋亡,同时通过Western印迹和实时荧光定量PCR检测凋亡相关蛋白和m RNA的表达;加入PI3K/Akt通路抑制剂LY294002或15μmol/L土槿皮乙酸处理A498细胞48 h后,Western印迹检测相关蛋白的表达。结果:经不同浓度土槿皮乙酸作用A498细胞48 h后,与未加土槿皮乙酸组细胞相比,细胞凋亡率显著上升,且呈剂量依赖性,比较差异有统计学意义(P0.05);同时,Blc-2表达减少,Bax、caspase-9、caspase-3表达增多。Blc-2蛋白的表达量随LY294002或土槿皮乙酸的逐步加入而减少,而Bax、caspase-9、caspase-3的表达呈增加趋势;PI3K和Akt蛋白的表达量与是否加入LY294002或土槿皮乙酸无关,p-PI3K和Aktp-Ser473蛋白的表达量随LY294002或土槿皮乙酸的逐步加入而减少。结论:土槿皮乙酸可抑制A498细胞凋亡,其作用机制可能与PI3K/Akt通路相关。  相似文献   

2.
为探讨PI3K/Akt信号通路在眼镜蛇毒神经生长因子(NGF)诱导肝星状细胞凋亡中的作用,本实验分别采用CCK8和流式细胞术检测NGF对HSC-T6细胞增殖及凋亡作用,从而找出NGF作用HSC-T6细胞的最小有效浓度,同时应用Western Blot法分析NGF对细胞蛋白Akt磷酸化水平的影响。结果发现NGF浓度为4μg/m L时为诱导HSC-T6细胞凋亡的最小有效浓度,并且在作用HSC-T6细胞后,P-Akt的表达水平降低,Akt的表达量却增加。将该浓度NGF与信号通路抑制剂LY294002联合使用则协同作用增强。因此,眼镜蛇毒神经生长因子诱导HSC-T6细胞凋亡作用与PI3K/Akt信号通路有关。  相似文献   

3.
为了探讨葡萄籽原花青素(grape seed proanthocyanidin, GSP)对心肌细胞的保护作用及机制,通过CCK-8法评估细胞活力,采用Western-blot分析评估GSP对凋亡相关蛋白质(cleaved caspase-3、Bax和Bcl-2)和PI3K/Akt通路相关蛋白质(p-PI3K、PI3K、p-Akt和Akt)表达水平的影响,并使用TUNEL染色和Hoechst 33258染色评估H9c2心肌细胞凋亡情况。结果显示, GSP可以抑制H2O2诱导的H9c2心肌细胞的细胞毒性和凋亡,使促凋亡蛋白cleaved caspase-3和Bax表达下降,并使抗凋亡蛋白Bcl-2表达水平升高; GSP作用于H9c2细胞后, PI3K和Akt的磷酸化水平增加,使PI3K/Akt信号通路激活。实验结果初步表明, GSP可抑制氧化应激诱导的H9c2心肌细胞凋亡,其作用机制可能与激活PI3K/Akt信号通路有关。  相似文献   

4.
目的:研究体外大鼠骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells, BMSCs)在缺血缺氧条件下发生凋亡的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,骨髓间充质干细胞(BMSCs)在缺血缺氧条件下培养,通过Annexin V/PI双染细胞凋亡检测比较不同组别细胞的凋亡率和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞培养成功。②对照组(无缺血缺氧)与缺血缺氧组比较,缺血缺氧组的凋亡率显著性增加,而通过磷酸化Akt的表达量显著性增加提示PI3K(Phosphoinositide-3kinase)/Akt(ProteinkinaseB,PKB)信号通路被激活(P〈0.05);同时缺血缺氧组与缺血缺氧+PI3K/Akt抑制剂(LY294002)组比较,缺血缺氧+PI3K/Akt抑制剂(LY294002)组的凋亡率显著降低,而通过磷酸化Akt的表达量显著减少提示PI3K/Akt信号通路被抑制(P〈0.05)。结论:PI3K/Akt信号通路对体外缺血缺氧条件下培养的骨髓间充质干细胞凋亡发生有关键性作用。  相似文献   

5.
目的:研究体外大鼠骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells,BMSCs)在缺血缺氧条件下发生凋亡的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,骨髓间充质干细胞(BMSCs)在缺血缺氧条件下培养,通过Annexin V/PI双染细胞凋亡检测比较不同组别细胞的凋亡率和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞培养成功。②对照组(无缺血缺氧)与缺血缺氧组比较,缺血缺氧组的凋亡率显著性增加,而通过磷酸化Akt的表达量显著性增加提示PI3K(Phosphoinosi-tide-3kinase)/Akt(ProteinkinaseB,PKB)信号通路被激活(P<0.05);同时缺血缺氧组与缺血缺氧+PI3K/Akt抑制剂(LY294002)组比较,缺血缺氧+PI3K/Akt抑制剂(LY294002)组的凋亡率显著降低,而通过磷酸化Akt的表达量显著减少提示PI3K/Akt信号通路被抑制(P<0.05)。结论:PI3K/Akt信号通路对体外缺血缺氧条件下培养的骨髓间充质干细胞凋亡发生有关键性作用。  相似文献   

6.
目的探讨PI3K/AKT信号转导通路在大肠埃希菌(Escherichia coli,E.coli)诱导的人巨噬细胞系U937细胞凋亡中的作用。方法利用Western blot分析检测E.coli感染不同时间后磷酸化及非磷酸化AKT的表达;预先用不同浓度的LY294002(PI3K途径抑制剂)处理U937细胞60min,观察E.coli感染30min后U937细胞的凋亡情况。结果随着感染时间的延长,磷酸化AKT的表达逐渐下降。加入PI3K的抑制剂LY294002后,U937细胞的凋亡率逐渐升高。结论PI3K/AKT信号转导通路参与了E. coli诱导的U937细胞凋亡过程。LY294002通过特异性地抑制PI3K/AKT活性增加E.coli诱导的U937细胞凋亡率。  相似文献   

7.
目的:PI3K/Akt信号通路是与胶质瘤发生发展密切相关的核心通路之一,LY294002是该通路的特异性抑制剂。本研究通过探讨PI3K通路抑制剂LY294002对U87胶质瘤细胞系细胞衰老及凋亡的影响,从而为胶质瘤患者治疗的新策略奠定理论基础。方法:将体外培养的人脑胶质瘤U87细胞株分为DMSO处理的对照组和LY294002(100μM)处理的实验组,采用β-半乳糖苷酶染色和流式细胞术的方法,分别检测并比较两组肿瘤细胞衰老和凋亡的情况。结果:LY294002处理组U87胶质瘤细胞的衰老指数(32.20±4.46%)显著高于DMSO对照组(3.40±1.61%,t=6.254,P0.001)。另外,与DMSO对照组相比,凋亡蛋白caspase-3mRNA的表达在LY294002处理组胶质瘤细胞中显著上调(t=8.923,P0.05)。LY294002处理组肿瘤细胞的凋亡指数(80.10±4.832%)明显高于DMSO对照组(4.260±1.073%,t=8.923,P0.05)。结论:LY294002既能够诱导肿瘤细胞衰老,又能够诱导肿瘤细胞凋亡,然而其诱导胶质瘤细胞凋亡的能力占据主导地位,为其发挥抗胶质瘤效应的主要途径。另外,在LY294002的持续作用下,部分衰老的肿瘤细胞或许会发生凋亡。这些结论为为临床增强胶质瘤患者的联合化疗奠定了理论基础。  相似文献   

8.
研究四氢紫堇萨明对Aβ25-35诱导的阿尔茨海默病细胞模型Tau蛋白磷酸化的影响及其可能作用机理。以神经细胞PC-12为载体,Aβ25-35诱导48h建立AD细胞模型,MTS试剂盒检测细胞活力,激光共聚焦显微镜观察细胞核和细胞微管变化情况,Westernblot法检测蛋白表达水平。结果显示,四氢紫堇萨明可显著增强模型细胞活力,改善微管形态,降低p-Tau(Ser396)和p-GSK-3β(Tyr216)表达水平,升高p-GSK-3β(Ser9)和p-AKT表达水平(P<0.05);PI3K抑制剂LY294002可部分阻断四氢紫堇萨明对模型细胞的上述改善作用。以上结果表明四氢紫堇萨明可显著改善AD细胞模型Tau蛋白过度磷酸化,从而改善细胞骨架微管形态,增强细胞活力,其机理可能与激活PI3K/Akt信号通路,降低GSK-3β活性,改善蛋白激酶/蛋白磷酸酯酶系统失衡相关。  相似文献   

9.
探讨高糖和PI3K/Akt通路对足细胞内Ⅳ型胶原(Col Ⅳ)表达的影响。体外培养小鼠足细胞,给予高糖(30mmol/L)处理后,分别于0,12,24,48h收集细胞,采用免疫细胞化学染色法和Western blot技术检测Col Ⅳ的表达;Western blot技术检测Akt的活化及LY294002对Col Ⅳ表达的抑制效应。结果表明,高糖诱导足细胞内Col Ⅳ蛋白表达增多,24h明显,各时间点与高糖刺激前相比均有统计学差异(P<0.05);高糖激活Akt蛋白磷酸化,p-Akt随刺激时间延长表达增多。PI3K/Akt通路抑制剂LY294002孵育细胞24h后,可减弱高糖诱导的足细胞内Col Ⅳ的表达(P<0.05)。因此,高糖可能通过激活PI3K/Akt通路上调足细胞内Ⅳ型胶原表达。  相似文献   

10.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。  相似文献   

11.
Li C  Zhou C  Wang S  Feng Y  Lin W  Lin S  Wang Y  Huang H  Liu P  Mu YG  Shen X 《PloS one》2011,6(10):e27053
Malignant gliomas represent one of the most aggressive types of cancers and their recurrence is closely linked to acquired therapeutic resistance. A combination of chemotherapy is considered a promising therapeutic model in overcoming therapeutic resistance and enhancing treatment efficacy. Herein, we show by colony formation, Hochest 33342 and TUNEL staining, as well as by flow cytometric analysis, that LY294002, a specific phosphatidylinositide-3-kinase (PI3K) inhibitor, enhanced significantly the sensitization of a traditional cytotoxic chemotherapeutic agent, tamoxifen-induced apoptosis in C6 glioma cells. Activation of PI3K signaling pathway by IGF-1 protected U251 cells from apoptosis induced by combination treatment of LY294002 and tamoxifen. Interference of PI3K signaling pathway by PI3K subunit P85 siRNA enhanced the sensitization of U251 glioma cells to tamoxifen -induced apoptosis. By Western blotting, we found that combination treatment showed lower levels of phosphorylated Akt(Ser473) and GSK-3β(Ser9) than a single treatment of LY294002. Further, we showed a significant decrease of nuclear β-catenin by combination treatment. In response to the inhibition of β-catenin signaling, mRNA and protein levels of Survivin and the other three antiapoptotic genes Bcl-2, Bcl-xL, and Mcl-1 were significantly decreased by combination treatment. Our results indicated that the synergistic cytotoxic effect of LY294002 and tamoxifen is achieved by the inhibition of GSK-3β/β-catenin signaling pathway.  相似文献   

12.
In an attempt to clarify the protective effect of puerarin on toxin-insulted dopaminergic neuronal death, this present study was carried out by using a typical Parkinson's disease (PD) model - 1-methyl-4-phenylpyridinium iodide (MPP(+))-induced dopaminergic SH-SY5Y cellular model. Data are presented, which showed that puerarin up-regulated Akt phosphorylation in both of MPP(+)-treated and non-MPP(+)-treated cells. The presence of PI3K inhibitor LY294002 completely blocked puerarin-induced activation of Akt phosphorylation. Moreover, puerarin decreased MPP(+)-induced cell death, which was blocked by phosphoinositide 3-kinase (PI3K) inhibitor LY294002. We further demonstrated that puerarin protected against MPP(+)-induced p53 nuclear accumulation, Puma (p53-upregulated mediator of apoptosis) and Bax expression and caspase-3-dependent programmed cell death (PCD). This protection was blocked by applying a PI3K/Akt inhibitor. Additionally, it was Pifithrin-α, but not Pifithrin-μ, which blocked MPP(+)-induced Puma and Bax expression, caspase-3 activation and cell death. Collectively, these data suggest that the activation of PI3K/Akt pathway is involved in the protective effect of puerarin against MPP(+)-induced neuroblastoma SH-SY5Y cell death through inhibiting nuclear p53 accumulation and subsequently caspase-3-dependent PCD. Puerarin might be a potential therapeutic agent for PD.  相似文献   

13.
Lee CJ  Liao CL  Lin YL 《Journal of virology》2005,79(13):8388-8399
Flaviviruses such as dengue virus (DEN) and Japanese encephalitis virus (JEV) are medically important in humans. The lipid kinase, phosphatidylinositol 3-kinase (PI3K) and its downstream target Akt have been implicated in the regulation of diverse cellular functions such as proliferation, and apoptosis. Since JEV and DEN appear to trigger apoptosis in cultured cells at a rather late stage of infection, we evaluated the possible roles of the PI3K/Akt signaling pathway in flavivirus-infected cells. We found that Akt phosphorylation was noticeable in the JEV- and DEN serotype 2 (DEN-2)-infected neuronal N18 cells in an early, transient, PI3K- and lipid raft-dependent manner. Blocking of PI3K activation by its specific inhibitor LY294002 or wortmannin greatly enhanced virus-induced cytopathic effects (CPEs), even at an early stage of infection, but had no effect on virus production. This severe CPE was characterized as apoptotic cell death as evidenced by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining and cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). Mechanically, the initiator and effector caspases involved are mainly caspase-9 and caspase-6, since only a pan-caspase inhibitor and the inhibitors preferentially target caspase-9 and -6, but not the ones antagonizing caspase-8, -3, or -7 alleviated the levels of PARP cleavage after virus infection and PI3K blockage. Furthermore, Bcl-2 appears to be a crucial mediator downstream of PI3K/Akt signaling, since overexpression of Bcl-2 reduced virus-induced apoptosis even when PI3K activation was repressed. Collectively, our results suggest an anti-apoptotic role for the PI3K/Akt pathway triggered by JEV and DEN-2 to protect infected cells from early apoptotic cell death.  相似文献   

14.
Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.  相似文献   

15.
In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway.  相似文献   

16.
The integrins and PI3K/Akt are important mediators of the signal transduction pathways involved in tumor angiogenesis and cell survival after exposure to ionizing radiation. Selective targeting of either integrins or PI3K/Akt can radiosensitize tumors. In this study, we tested the hypothesis that the combined inhibition of integrin alphanubeta3 by cRGD and PI3K/Akt by LY294002 would significantly enhance radiation-induced inhibition of angiogenesis by vascular endothelial cells. Treatment with cRGD inhibited the adhesion and tube formation of human umbilical vein endothelial cells (HUVECs). The inhibitory effect was further increased when cRGD and LY294002 were applied simultaneously. Both radiation and cRGD induced Akt phosphorylation, up-regulated COX2 expression, and increased PGE2 production in HUVECs. Treatment with LY294002 effectively inhibited radiation- and cRGD-induced Akt phosphorylation and up-regulation of COX2 and increased apoptosis of HUVECs. The combined use of cRGD and LY294002 enhanced radiation-induced cell killing. The clonogenic survival of HUVECs was decreased from 34% with 2 Gy radiation to 4% with these agents combined. These results demonstrate that combined use of ionizing radiation, cRGD and LY294002 inhibited multiple signaling transduction pathways involved in tumor angiogenesis and enhanced radiation-induced effects on vascular endothelial cells.  相似文献   

17.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R- fibroblasts lacking IGF-1 receptors. In these R- cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1-Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R- cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1-Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

18.
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.  相似文献   

19.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号