首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
木糖的高效发酵是制约纤维素燃料乙醇生产的技术瓶颈之一,高性能发酵菌种的开发是本领域研究的重点。以木糖发酵的典型菌株休哈塔假丝酵母为材料,研究氮源配比、葡萄糖和木糖初始浓度、葡萄糖添加及典型抑制物等因素对其木糖利用和乙醇发酵性能的影响规律。结果表明,硫酸铵更适宜于木糖和葡萄糖发酵产乙醇。在摇瓶振荡发酵条件下,该酵母可发酵164.0 g/L葡萄糖生成61.9 g/L乙醇,糖利用率和乙醇得率分别为99.8%和74.0%;受酵母细胞膜上转运体系的限制,对木糖的最高发酵浓度为120.0 g/L,可生成45.7 g/L乙醇,糖利用率和乙醇得率分别达到94.8%和87.0%。休哈塔假丝酵母发酵木糖的主要产物为乙醇,仅生成微量的木糖醇;添加葡萄糖可促进木糖的利用;休哈塔假丝酵母在葡萄糖发酵时的乙酸和甲酸的耐受浓度分别为8.32和2.55 g/L,木糖发酵时的乙酸和甲酸的耐受浓度分别为6.28和1.15 g/L。  相似文献   

2.
木糖醇是一种在食品、医药、轻工等领域具有广泛用途的多元醇,目前主要通过酸水解木聚糖获得木糖并进一步化学催化加氢方法制备。提取木糖过程中会产生大量的木糖母液副产物,其中含有一定浓度的葡萄糖、木糖、阿拉伯糖等碳源,以及少量的糠醛、四氢呋喃等物质。研究微生物转化木糖母液生产高附加值化学品不仅能够提高木糖母液的利用价值,而且能够减少环境污染。热带假丝酵母不仅能够利用葡萄糖,也具有高效的木糖代谢途径。首先利用代谢工程技术删除了热带假丝酵母菌株的木糖醇脱氢酶基因,获得能够转化木糖积累木糖醇的突变株。在此基础上,评价了突变株在木糖母液培养基中的发酵性能。通过单因素优化实验确定了突变株发酵生产木糖醇较优的发酵工艺:培养基组成为木糖母液300g/L,玉米浆5g/L;最佳发酵条件为:发酵温度35℃,初始p H为5.0,接种量15%,200r/min摇床培养140h。利用优化后的发酵工艺,木糖醇产量达到83.01g/L。初步建立了转化木糖母液生产木糖醇的工艺,为进一步利用木糖母液奠定了基础。  相似文献   

3.
木糖是纤维素原料水解液中最主要的五碳糖成分,由于野生的酿酒酵母缺乏有效的木糖利用途径,将外源木糖代谢途径整合至酿酒酵母中使其具有发酵木糖生产乙醇的能力是构建纤维素乙醇发酵菌株的关键。国内外学者的研究表明,同一木糖代谢途径导入不同酿酒酵母菌株中,所得到的重组菌发酵性能存在明显差异,表明宿主的遗传背景对菌株利用木糖能力和发酵性能具有重要的影响。就酿酒酵母宿主对重组菌株的木糖发酵性能的影响进行了综述,分析了产生宿主差异的内在机理,为进一步选育高效木糖共发酵菌种提供借鉴。  相似文献   

4.
木糖是木质纤维素原料水解液中的第二大组分,木糖和葡萄糖的充分利用是有经济性地生产纤维素乙醇的关键。通过基因克隆手段构建了一株可以高效利用木糖产乙醇的重组运动发酵单胞菌Zymomonas mobilis TSH01,并进行了利用单糖溶液、混合糖溶液及玉米秸秆水解液发酵产乙醇效率的研究。结果表明,利用单一葡萄糖或单一木糖溶液发酵时,当糖浓度为8%、发酵72 h后,糖利用率分别为100%和98.9%,乙醇代谢收率分别为87.8%和78.3%;利用8%葡萄糖和8%木糖的混合溶液发酵时,72 h后,葡萄糖和木糖的利用率分别为98.5%和97.4%,乙醇代谢收率为94.9%。利用含3.2%葡萄糖和3.5%木糖的玉米秸秆水解液发酵72 h后,葡萄糖和木糖的利用率分别为100%和92.3%,乙醇代谢收率为91.5%。此外,磷酸二氢钾对发酵过程中木糖利用率以及乙醇收率的提高有明显促进作用。  相似文献   

5.
高效利用木糖发酵生产D-乳酸或其他生物质产品,是充分利用木质纤维素的一个关键问题。以高效利用木糖产L-乳酸的Escherichia coli WL204为出发菌株,采用RED基因置换技术将ldhL基因置换为ldhA基因,获得一株能利用木糖产D-乳酸的大肠杆菌工程菌株Escherichia coli LHY02,该菌株利用10%木糖发酵,D-乳酸产量达到84.4 g/L,产物光学纯度达到99.5%。此外,该菌株仍然具有较好的利用葡萄糖产D-乳酸的能力。  相似文献   

6.
木糖发酵重组菌研究进展   总被引:8,自引:1,他引:7  
木糖发酵是植物纤维原料生物转化制取乙醇商业化生产的基础和关键 ,但自然界存在的微生物菌株不能满足商业化生产的需要。利用基因工程技术对细菌和酵母进行改造 ,以提高它们在厌氧条件下的木糖发酵能力成为目前研究和开发的重点。通过转基因和基因删除技术 ,主要对Escherichiacoli、Zymomonasmobilis、Pichiastipitis和Saccharomycescerevisiae等典型的乙醇发酵菌株实施基因改造 ,构建出一系列不同类型的木糖发酵重组菌株。与野生型菌株相比 ,重组菌株在厌氧条件下的木糖发酵能力得到了不同程度的改善 ,但是它们仍然未能投入于商业化生产。微生物的木糖代谢工程和木糖发酵重组菌株的构建有待于进一步的深入研究 。  相似文献   

7.
木糖发酵是利用植物纤维原料生物转化制取乙醇工业化生产的技术基础和关键。野生酵母中有些种属菌株可以高效利用木糖产生乙醇,其中毕赤酵母(Pichiastipim)的乙醇转化速度最高达到0.99g/L/h,转化率几乎接近理论值0.5g/g,发酵液中最高乙醇浓度可迭到(61±9)g/L。但工业生产中要达到毕赤酵母所要求的微氧最佳发酵条件比较困难。近十几年来许多研究尝试根据代谢工程原理,利用基因工程技术对酿酒酵母进行改造。从而提高其发酵木糖产生乙醇的能力。这些研究大多是将毕赤酵母的一些木糖发酵关键酶基因(XYL1、XYL2、XYL3以及ADHl、ADH2等)转入酿酒酵母细胞内,并试图得到正常转录和表达。但到目前为止,大部分的重组菌株的乙醇发酵性能还没有达到工业生产的要求。  相似文献   

8.
利用固定化米根霉在三相流化床中发酵生成L-乳酸   总被引:3,自引:0,他引:3  
用聚氨酯泡沫吸附固定米根霉菌丝,在三相流化床中对葡萄糖、木糖以及木糖渣的纤维素酶解液等不同碳源进行L乳酸发酵研究,并对游离菌丝和固定化菌丝发酵L乳酸进行了比较。结果表明,聚氨酯泡沫是米根霉的良好载体,具有经济、高效等特点。实验条件下,不同碳源的乳酸转化率分别为:葡萄糖,82.5%;木糖,53.8%;木糖渣酶水解液,71.9%。三相流化床中固定化米根霉产酸速率(对葡萄糖)为191g.h-1.L(bead)-1。  相似文献   

9.
为了使谷氨酸棒杆菌较好地利用木糖生产有机酸,将来自Escherichia coli K-12的木糖异构酶基因xylA构建到表达载体pXMJ19中,导入Corynebacterium glutamicum ATCC13032Δldh中,成功表达了该酶基因。结果表明:重组菌株在以木糖为唯一C源进行发酵时,木糖的消耗速率为0.54 g/(L·h),木糖异构酶比酶活约为0.54 U/mL;在以木糖和葡萄糖的混合糖为C源进行发酵时,菌株优先利用葡萄糖,在葡萄糖完全消耗后,菌株开始有效利用木糖;以木糖为唯一C源进行两阶段发酵时,琥珀酸的收率可达(0.62±0.003)g/g。  相似文献   

10.
许伟  严明  欧阳平凯 《生物工程学报》2011,27(12):1690-1701
近年来,随着发展低碳经济的迫切需要,可再生资源利用研究方兴未艾,其中,构建充分利用木质纤维素水解产物木糖生产乙醇的重组菌成为研究热点.木糖异构酶由于不需要辅酶,成为构建利用木糖重组酵母的首选途径.文中对近年来木糖异构酶的研究进展进行了综述.首先介绍了木糖异构酶的基本性质、序列、结构和功能特性,然后对其耐热机理进行了总结归纳;重点阐述了基于序列及结构进行的酶分子改造研究,包括底物特异性改造、热稳定性改造等;同时,结合作者的研究经历,对如何提高嗜热木糖异构酶在常温下的活性进行了探讨.最后,对木糖异构酶的研究进展进行了总结和展望,对基于结构改善木糖异构酶催化活性及构建新型高效利用木糖生产乙醇的重组菌具有重要的指导意义.  相似文献   

11.
Lignocellulosic biomass has considerable potential for the production of fuels and chemicals as a promising alternative to conventional fossil fuels. However, the bioconversion of lignocellulosic biomass to desired products must be improved to reach economic viability. One of the main technical hurdles is the presence of inhibitors in biomass hydrolysates, which hampers the bioconversion efficiency by biorefinery microbial platforms such as Saccharomyces cerevisiae in terms of both production yields and rates. In particular, acetic acid, a major inhibitor derived from lignocellulosic biomass, severely restrains the performance of engineered xylose‐utilizing S. cerevisiae strains, resulting in decreased cell growth, xylose utilization rate, and product yield. In this study, the robustness of XUSE, one of the best xylose‐utilizing strains, was improved for the efficient conversion of lignocellulosic biomass into bioethanol under the inhibitory condition of acetic acid stress. Through adaptive laboratory evolution, we successfully developed the evolved strain XUSAE57, which efficiently converted xylose to ethanol with high yields of 0.43–0.50 g ethanol/g xylose even under 2–5 g/L of acetic stress. XUSAE57 not only achieved twofold higher ethanol yields but also improved the xylose utilization rate by more than twofold compared to those of XUSE in the presence of 4 g/L of acetic acid. During fermentation of lignocellulosic hydrolysate, XUSAE57 simultaneously converted glucose and xylose with the highest ethanol yield reported to date (0.49 g ethanol/g sugars). This study demonstrates that the bioconversion of lignocellulosic biomass by an engineered strain could be significantly improved through adaptive laboratory evolution for acetate tolerance, which could help realize the development of an economically feasible lignocellulosic biorefinery to produce fuels and chemicals.  相似文献   

12.
根霉菌利用木质纤维素发酵生产有机酸的研究进展*   总被引:1,自引:0,他引:1  
木质纤维素是世界上储量最丰富、最廉价的可再生生物质资源,利用木质纤维素发酵生产有机酸具有重大的经济效益及社会效益。为发掘影响木质纤维素利用的关键因素,对根霉菌的木糖代谢途径以及利用木质纤维素发酵生产乳酸、富马酸等重要有机酸的生产方式、发酵策略等进行了阐述,指出针对木糖的转化率是制约木质纤维素高效利用的瓶颈。  相似文献   

13.
ABSTRACT: BACKGROUND: Xylose is the second most abundant carbohydrate in the lignocellulosic biomass hydrolysate. The fermentation of xylose is essential for the bioconversion of lignocelluloses to fuels and chemicals. However the wild-type strains of Saccharomyces cerevisiae are unable to utilize xylose. Many efforts have been made to construct recombinant yeast strains to enhance xylose fermentation over the past few decades. Xylose fermentation remains challenging due to the complexity of lignocellulosic biomass hydrolysate. In this study, a modified genome shuffling method was developed to improve xylose fermentation by S. cerevisiae. Recombinant yeast strains were constructed by recursive DNA shuffling with the recombination of entire genome of P. stipitis with that of S. cerevisiae. RESULTS: After two rounds of genome shuffling and screening, one potential recombinant yeast strain ScF2 was obtained. It was able to utilize high concentration of xylose (100 g/L to 250 g/L xylose) and produced ethanol. The recombinant yeast ScF2 produced ethanol more rapidly than the naturally occurring xylose-fermenting yeast, P. stipitis, with improved ethanol titre and much more enhanced xylose tolerance. CONCLUSION: The modified genome shuffling method developed in this study was more effective and easier to operate than the traditional protoplast fusion based method. Recombinant yeast strain ScF2 obtained in this was a promising candidate for industrial cellulosic ethanol production. In order to further enhance its xylose fermentation performance, ScF2 needs to be additionally improved by metabolic engineering and directed evolution.  相似文献   

14.
Corynebacterium glutamicum, the industrial microbe traditionally used for the production of amino acids, proved its value for the fermentative production of diverse products through genetic/metabolic engineering. A successful demonstration of the heterologous expression of arabinose and xylose utilization genes made them interesting biocatalysts for pentose fermentation, which are the main components in lignocellulosic hydrolysates. Its ability to withstand substantial amount of general growth inhibitors like furfurals, hydroxyl methyl furfurals and organic acids generated from the acid/alkali hydrolysis of lignocellulosics in growth arrested conditions and its ability to produce amino acids like glutamate and lysine in acid hydrolysates of rice straw and wheat bran, indicate the future prospective of this bacterium as a potent biocatalyst in fermentation biotechnology. However, the efforts so far on these lines have not yet been reviewed, and hence an attempt is made to look into the efficacy and prospects of C. glutamicum to utilize the normally non-fermentable pentose sugars from lignocellulosic biomass for the production of commodity chemicals.  相似文献   

15.
During second‐generation bioethanol production from lignocellulosic biomass, the desired traits for fermenting microorganisms, such as Saccharomyces cerevisiae, are high xylose utilization and high robustness to inhibitors in lignocellulosic hydrolysates. However, as observed previously, these two traits easily showed the antagonism, one rising and the other falling, in the C6/C5 co‐fermenting S. cerevisiae strain. In this study, LF1 obtained in our previous study is an engineered budding yeast strain with a superior co‐fermentation capacity of glucose and xylose, and was then mutated by atmospheric and room temperature plasma (ARTP) mutagenesis to improve its robustness. The ARTP‐treated cells were grown in 50% (v/v) leachate from lignocellulose pretreatment with high inhibitors content for adaptive evolution. After 30 days, the generated mutant LF1‐6 showed significantly enhanced tolerance, with a six‐fold increase in cell density in the above leachate. Unfortunately, its xylose utilization dropped markedly, indicating the recurrence of the negative correlation between xylose utilization and robustness. To alleviate this antagonism, LF1‐6 cells were iteratively mutated with ARTP mutagenesis and then anaerobically grown using xylose as the sole carbon source, and xylose utilization was restored in the resulting strain 6M‐15. 6M‐15 also exhibited increased co‐fermentation performance of xylose and glucose with the highest ethanol productivity reported to date (0.525 g g?1 h?1) in high‐level mixed sugars (80 g L?1 glucose and 40 g L?1 xylose) with no inhibitors. Meanwhile, its fermentation time was shortened by 8 h compared to that of LF1. During the fermentation of non‐detoxified lignocellulosic hydrolysate with high inhibitor concentrations at pH ~3.5, 6M‐15 can efficiently convert glucose and xylose with an ethanol yield of 0.43 g g?1. 6M‐15 is also regarded as a potential chassis cell for further design of a customized strain suitable for production of second‐generation bioethanol or other high value‐added products from lignocellulosic biomass.  相似文献   

16.
No comprehensive review on the bioconversion of lignocellulosic biomass to hydrogen is presented. This paper provides an up-to-date review on recent research development in biotechnology-based lignocellulosic biomass-to-H2 conversion. Bioconversion of lignocellulosic prehydrolysate, hydrolysate or cellulose to hydrogen was discussed in terms of the involved microorganisms and the bioaugmentation tactics. To achieve fully the utilization of biomass, the integrated approaches composed of coupled dark–photo fermentation and the dark fermentation and bioelectrohydrogenesis were sketched. Additionally, this review sheds light on the perspectives on the lignocellulosic biomass conversion to hydrogen, and on the scientific and technical challenges faced for the lignocelluloses bioconversion.  相似文献   

17.
Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild‐type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high‐ethanol‐producing strain was obtained. Designated as TJ2‐3, this strain could ferment xylose and produce 1.5 times more ethanol than wild‐type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains.  相似文献   

18.
An industrial ethanol-producing Saccharomyces cerevisiae strain with genes of fungal oxido-reductive pathway needed for xylose fermentation integrated into its genome (YRH1415) was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than YRH1415 strain and able to co-ferment glucose and xylose in the presence of high concentrations of inhibitors resulting from the hydrolysis of lignocellulosic biomass (switchgrass). The rate of xylose consumption did not appear to be affected by the ploidy of strains or the presence of two copies of the xylose fermentation genes but by heterozygosity of alleles for xylose metabolism in YRH1415. Furthermore, inhibitor tolerance was influenced by the heterozygous genome of the industrial strain, which also showed a marked influenced on tolerance to increasing concentrations of toxic compounds, such as furfural. In this work, selection of haploid derivatives was found to be a useful strategy to develop efficient xylose-fermenting industrial yeast strains.  相似文献   

19.
A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.  相似文献   

20.
高效发酵木糖生产乙醇酵母菌株的构建   总被引:3,自引:0,他引:3  
获得高效发酵木糖生产乙醇的酵母菌株是木质纤维素生物转化生产燃料乙醇的重要前提。在4%乙醇驯化的基础上,选择了乙醇耐性提高的休哈塔假丝酵母(Candida shehatae)CICC1766菌株进一步进行紫外诱变,得到了木糖发酵性能较强的呼吸缺陷型突变体,并与乙醇发酵性能良好的酿酒酵母(Saccharomyces cerevisiae)ATCC4126进行原生质体融合。采用单亲灭活法对休哈塔假丝酵母原生质体进行紫外灭活,在聚乙二醇(PEG)诱导下融合,对得到的融合子进行木糖发酵能力测定,选择到了一株能够更好地利用木糖产乙醇,并且木糖发酵性能比亲本得到明显提高的融合子F6,此融合子发酵50 g/L木糖,最高乙醇浓度达到18.75g/L,乙醇得率为0.375,达到理论转化值0.511的73.4%。与原始出发菌株CICC1766相比,乙醇产量提高了28%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号