首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rensch's rule states that degree of sexual dimorphism increases with body size in species with larger males, and decreases with body size in those with larger females. To test this rule, we assessed the pattern of sexual size dimorphism in tinamous using a comparative analysis of independent contrasts. Tinamous are a monophyletic group of primitive birds comprising at least 47 ground dwelling species with prominent or exclusive paternal care of eggs and offspring. Although the size of females exceeded that of males in most considered species, we found an isometric relationship between males and females, instead of the negative allometric one predicted by Rensch's rule. Previous studies in Strigiformes and Falconiformes found positive allometric and isometric relationships respectively, and, considering these findings with our results, we conclude that Rensch's rule is not supported by birds with exclusively female-biased sexual dimorphism in size.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 519–527  相似文献   

2.
Rensch's rule refers to a pattern in sexual size dimorphism (SSD) in which SSD decreases with body size when females are the larger sex and increases with body size when males are the larger sex. Many animal taxa conform to Rensch's rule, but it has yet to be investigated in plants. Using herbarium collections from New Zealand, we characterized the size of leaves and stems of 297 individuals from 38 dioecious plant species belonging to three distantly related phylogenetic lineages. Statistical comparisons of leaf sizes between males and females showed evidence for Rensch's rule in two of the three lineages, indicating SSD decreases with leaf size when females produce larger leaves and increases with leaf size when males produce larger leaves. A similar pattern in SSD was observed for stem sizes. However, in this instance, females of small-stemmed species produced much larger stems than did males, but as stem sizes increased, SSD often disappeared. We hypothesize that sexual dimorphism in stem sizes results from selection for larger stems in females, which must provide mechanical support for seeds, fruits, and dispersal vectors, and that scaling relationships in leaf sizes result from correlated evolution with stem sizes. The overall results suggest that selection for larger female stem sizes to support the weight of offspring can give rise to Rensch's rule in dioecious plants.  相似文献   

3.
Among species with sexual size dimorphism (SSD), taxa in which males are the larger sex have increasing SSD with increasing body size, whereas in taxa in which females are the larger sex, SSD decreases with body size: Rensch's rule. We show in flying lizards, a clade of mostly female‐larger species, that SSD increases with body size, a pattern similar to that in clades with male‐biased SSD or more evenly mixed SSD. The observed pattern in Draco appears due to SSD increasing with evolutionary changes in male body size; specifically divergence in body size among species that are in sympatric congeneric assemblages. We suggest that increasing body size, resulting in decreased gliding performance, reduces the relative gliding cost of gravidity in females, and switches sexual selection in males away from a small‐male, gliding advantage and toward selection on large size and fighting ability as seen in many other lizards. Thus, selection for large females is likely greater than selection for large males at the smaller end of the body size continuum, whereas this relationship reverses for species at the larger end of the continuum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 270–282.  相似文献   

4.
A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch's rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch's rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch's rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female-biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life-history trade-offs and sexual selection.  相似文献   

5.
Sexual dimorphism is usually interpreted in terms of reproductive adaptations, but the degree of sex divergence also may be affected by sex-based niche partitioning. In gape-limited animals like snakes, the degree of sexual dimorphism in body size (SSD) or relative head size can determine the size spectrum of ingestible prey for each sex. Our studies of one mainland and four insular Western Australian populations of carpet pythons ( Morelia spilota ) reveal remarkable geographical variation in SSD, associated with differences in prey resources available to the snakes. In all five populations, females grew larger than males and had larger heads relative to body length. However, the populations differed in mean body sizes and relative head sizes, as well as in the degree of sexual dimorphism in these traits. Adult males and females also diverged strongly in dietary composition: males consumed small prey (lizards, mice and small birds), while females took larger mammals such as possums and wallabies. Geographic differences in the availability of large mammalian prey were linked to differences in mean adult body sizes of females (the larger sex) and thus contributed to sex-based resource partitioning. For example, in one population adult male snakes ate mice and adult females ate wallabies; in another, birds and lizards were important prey types for both sexes. Thus, the high degree of geographical variation among python populations in sexually dimorphic aspects of body size and shape plausibly results from geographical variation in prey availability.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 113–125.  相似文献   

6.
Lizards of the family Eublepharidae exhibit interspecific diversity in body size, sexual size dimorphism (SSD), head size dimorphism (HSD), occurrence of male combat, and presence of male precloacal pores. Hence, they offer an opportunity for testing hypotheses for the evolution and maintenance of sexual dimorphism. Historical analysis of male agonistic behaviour indicates that territoriality is ancestral in eublepharid geckos. Within Eublepharidae, male combat disappeared twice. In keeping with predictions from sexual selection theory, both events were associated with parallel loss of male-biased HSD and ventral scent glands. Eublepharids therefore provide new evidence that male-biased dimorphic heads are weapons used in aggressive encounters and that the ventral glands probably function in territory marking rather than in intersexual communication. Male-biased SSD is a plesiomorphic characteristic and was affected by at least three inversions. Shifts in SSD and male combat were not historically correlated. Therefore, other factors than male rivalry appear responsible for SSD inversions. Eublepharids demonstrate the full scope of Rensch's rule (small species tend to be female-larger, larger species male-larger). Most plausibly, SSD pattern hence seems to reflect body size variation. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 303–314.  相似文献   

7.
Variation in body size and sexual size dimorphism(SSD) can have important consequences for animal ecology, behavior, population dynamics and the evolution of life-history traits. Organisms are expected to be larger in colder climate(i.e., Bergmann's rule) and SSD varies with body size(i.e., Rensch's rule). However, the underlying mechanisms are still elusive. The plateau brown frog(Rana kukunoris), a medium-sized anuran species with femalebiased SSD, is endemic to the Qinghai-Tibetan Plateau(QTP). From 1797 m(Maoxiang'ping) to 3453 m(Heihe'qiao) in the eastern margin of the QTP, we surveyed 10 populations of R. kukunoris and collected phalanges and snout vent length(SVL) data for 258 adult individuals(199 males versus 59 females). Based on these data, we explored how body size and SSD varying along the altitudinal gradient and examined the corresponding effects of temperature. We found body size to be larger at higher altitude for males but not for females, with likely effects from the temperature on the variation in male body size. Sex differences in growth rates may be the main cause of the variation in SSD. Our results suggested that only males follow the Bergmann's rule and variation in SSD of R. kukunoris do not support the Rensch's rule and its inverse. Therefore, the variations of body size can be different between sexes and the applicability of both Bergmann's rule and Rensch's rule should depend on species and environment where they live.  相似文献   

8.
Within any given clade, male size and female size typically covary, but male size often varies more than female size. This generates a pattern of allometry for sexual size dimorphism (SSD) known as Rensch's rule. I use allometry for SSD among populations of the water strider Aquarius remigis (Hemiptera, Gerridae) to test the hypothesis that Rensch's rule evolves in response to sexual selection on male secondary sexual traits and an alternative hypothesis that it is caused by greater phenotypic plasticity of body size in males. Comparisons of three populations reared under two temperature regimes are combined with an analysis of allometry for genital and somatic components of body size among 25 field populations. Contrary to the sexual-selection hypothesis, genital length, the target of sexual selection, shows the lowest allometric slope of all the assayed traits. Instead, the results support a novel interpretation of the differential-plasticity hypothesis: that the traits most closely associated with reproductive fitness (abdomen length in females and genital length in males) are "adaptively canalized." While this hypothesis is unlikely to explain Rensch's rule among species or higher clades, it may explain widespread patterns of intraspecific variation in SSD recently documented for many insect species.  相似文献   

9.
Sexual size dimorphism (SSD) is widespread within the animal kingdom. Rensch’s rule describes a relationship between SSD and body size: SSD increases with body size when males are the larger sex, and decreases with body size when females are the larger sex. Rensch’s rule is well supported for taxa that exhibit male-biased SSD but patterns of allometry among taxa with female-biased size dimorphism are mixed, there is evidence both for and against the rule. Furthermore, most studies have investigated Rensch’s rule across a variety of taxa; but among-population studies supporting Rensch’s rule are lacking, especially in taxa that display only slight SSD. Here, we tested whether patterns of intraspecific variation in SSD in greater horseshoe bats conform to Rensch’s rule, and evaluated the contribution of latitude to Rensch’s rule. Our results showed SSD was consistently female-biased in greater horseshoe bats, although female body size was only slightly larger than male body size. The slope of major axis regression of log10 (male) on log10 (female) was significantly different from 1. Forearm length for both sexes of greater horseshoe bats was significantly negatively correlated with latitude, and males displayed a slightly but nonsignificant steeper latitudinal cline in body size than females. We suggest that variation in patterns of SSD among greater horseshoe bat populations is consistent with Rensch’s rule indicating that males were the more variable sex. Males did not have a steeper body size–latitude relationship than females suggesting that sex-specific latitudinal variation in body size may not be an important contributing factor to Rensch’s rule. Future research on greater horseshoe bats might best focus on more comprehensive mechanisms driving the pattern of female-biased SSD variation.  相似文献   

10.
Sexual dimorphism has implications for a range of biological and ecological factors, and intersexual morphological differences within a species provide an ideal opportunity for investigating evolutionary influences on phenotypic variation. We investigated sexual size dimorphism (SSD) in an agamid species, Rankinia [Tympanocryptis] diemensis , to determine whether overall size and/or relative morphological trait size differences exist and whether geographic variation in size dimorphism occurs in this species. Relative morphological trait proportions included a range of head, limb, and inter-limb measurements. We found significant overall intersexual adult size differences; females were the larger sex across all sites but the degree of dimorphism between the sexes did not differ between sites. This female-biased size difference is atypical for agamid lizards, which are usually characterized by large male body size. In this species, large female-biased SSD appears to have evolved as a result of fecundity advantages. The size of relative morphological trait also differed significantly between the sexes, but in the opposite direction: relative head, tail, and limb sizes were significantly larger in males than females. This corresponds to patterns in trait size usually found in this taxonomic group, where male head and limb size is important in contest success such as male–male rivalry. There were site-specific morphological differences in hatchlings, including overall body size, tail, inter-limb, thigh, and hindlimb lengths; however, there were no sex-specific differences indicating the body size differences present in the adult form occur during ontogeny.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 699–709.  相似文献   

11.
The magnitude and direction of sexual size dimorphism (SSD) may vary considerably within and among taxa, and the primary causes of such variation have not been thoroughly elucidated. For example, the effect of abiotic factors is frequently attributed to explain intra‐ and interspecific variation in SSD. Rensch's rule, which states that males vary more in size than females when body size increases, has rarely been tested in bats. Therefore, whether bats follow Rensch's rule remains unclear, particularly when females are larger than males. We investigated whether four bat species presented SSD, as well as whether their body sizes varied within each sex across localities, testing the hypothesis that intraspecific SSD varies substantially depending of sampling localities. We finally examined whether bats followed Rensch's rule by simultaneously using intraspecific and interspecific approaches. Although SSD was not observed for most bat species within each locality, the females of three of the four captured species exhibited differences in body size between particular localities. Usually the females varied more in size than did males across localities, mostly exhibiting a female‐biased SSD. Significant differences in SSD were observed (i.e. mean values of the sexual dimorphism index), even though Rensch's rule was not followed.  相似文献   

12.
Rensch’s rule describes a pattern of allometry in sexual size dimorphism (SSD): when males are the larger sex (male-biased SSD), SSD increases with increasing body size, and when females are the larger sex (female-biased SSD), SSD decreases with increasing body size. While this expectation generally holds for taxa with male-biased or mixed SSD, examples of allometry for SSD consistent with Rensch’s rule in groups with primarily female-biased SSD are remarkably rare. Here, I show that the majority of dwarf chameleons (Bradypodion spp.) have female-biased SSD. In accordance with Rensch’s rule, the group exhibits an allometric slope of log(female size) on log(male size) less than one, although statistical significance is dependent on the phylogenetic comparative method used. In this system, this pattern is likely due to natural selection on both male and female body size, combined with fecundity selection on female body size. In addition to quantifying SSD and testing Rensch’s rule in dwarf chameleons, I discuss reasons why Rensch’s rule may only rarely apply to taxa with female-biased SSD.  相似文献   

13.
Rensch’s rule describes the pattern of sexual size dimorphism (SSD) claiming that in taxa where males are the larger sex, larger species generally exhibit higher male to female body size ratios. Agreement with Rensch’s rule is manifested by the slope of the allometric relationship between male and female body size exceeding one. In this paper we have tested the hypothesis that recent rapid evolutionary changes of body size accompanying domestication process and morphological radiation of domestic breeds follow Rensch’s rule. We have analyzed literature data on adult body size of males and females in domestic cows, yaks, buffaloes and other bovines (315, 12, 24 and 2 breeds, respectively) and compared it with SSD in 18 wild species/subspecies of the subfamily Bovinae. Male to female body mass ratio in domestic cows (1.48) was fairly comparable to that found in other species of domestic and wild bovines except domestic buffaloes (1.19). In cows we have demonstrated clear positive allometry of male to female body mass ratio (slope 1.21) predicted by Rensch’s rule, however, no such clear relationship was found when body mass was replaced by shoulder height. These findings are in agreement with those we have previously reported in other livestock species, goats and sheep.  相似文献   

14.
Rensch's rule states that sexual size dimorphism (SSD) increases with body size in taxa where males are larger, and decreases when females are larger. The dominant explanation for the trend is currently that competitive advantage for males is greater in larger individuals, whereas female size is constrained by the energetics of rearing offspring. This rule holds for a variety of vertebrate taxa, and opposing trends are rare. We examine the allometry of SSD within the Musteloidea and demonstrate a hypo‐allometry contrary to Rensch's rule, with lower SSD associated with larger body size. We provide evidence that feeding ecology is involved. Where diet promotes group‐living, the optimal strategy for the males of larger species is often not to attempt to defend access to multiple females, obviating any competitive advantage of relatively greater size. We conclude that the effect of feeding ecology on mating systems may be a hitherto neglected factor explaining variation in SSD.  相似文献   

15.
Macroevolutionary patterns of sexual size dimorphism (SSD) indicate how sexual selection, natural selection, and genetic and developmental constraints mold sex differences in body size. One putative pattern, known as Rensch's rule, posits that, among species with female‐larger SSD, the relative degree of SSD declines with species' body size, whereas, among male‐larger SSD species, relative SSD increases with size. Using a dataset of 196 chelonian species from all fourteen families, we investigated the correlation in body size evolution between male and female Chelonia and the validity of Rensch's rule for the taxon and within its major clades. We conclude that male–female correlations in body size evolution are high, although these correlations differ among chelonian families. Overall, SSD scales isometrically with body size; Rensch's rule is valid for only one family, Testudinidae (tortoises). Because macroevolutionary patterns of SSD can vary markedly among clades, even in a taxon as morphologically conservative as Testudines, one must guard against inappropriately pooling clades in comparative studies of SSD. The results of the present study also indicate that regression models that assume the x‐variable (e.g. male body size) is measured without statistical error, although frequently reported, will result in erroneous conclusions about phylogenetic trends in sexual size dimorphism. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 396–413.  相似文献   

16.
The attainment of sexual maturity has been shown to affect measures of sexual size dimorphism (SSD) and adult sex ratios in several groups of vertebrates. Using data for turtles, we tested the model that sex ratios are expected to be male‐biased when females are larger than males and female‐biased when males are larger than females because of the relationship of each with the attainment of maturity. Our model is based on the premise that the earlier‐maturing sex remains smaller, on average throughout life, and predominates numerically unless the sexes are strongly affected by differential mortality, differential emigration, and immigration, or biased primary sex ratios. Based on data for 24 species in seven families, SSD and sex ratios were significantly negatively correlated for most analyses, even after the effect of phylogenetic bias was removed. The analyses provide support for the model that SSD and adult sex ratios are correlated in turtles as a result of simultaneous correlation of each with sexual differences in attainment of maturity (bimaturism). Environmental sex determination provides a possible mechanism for the phenomenon in turtles and some other organisms. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 142–149.  相似文献   

17.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

18.
Female‐biased sexual size dimorphism (SSD) is widespread in many invertebrate taxa. One hypothesis for the evolution of SSD is the dimorphic niche hypothesis, which states that SSD evolved in response to the different sexual reproductive roles. While females benefit from a larger body size by producing more or larger eggs, males benefit from a faster development, which allows them to fertilize virgin females (protandry). To test this hypothesis, we studied the influence of temperature and intraspecific density on the development of Chorthippus montanus. We reared them in monosexual groups under different conditions and measured adult body size, wing length, nymphal mortality, and development time. The present study revealed an inverse temperature–size relationship: body size increased with increasing temperature in both sexes. Furthermore, we found intersexual differences in the phenotypic response to population density, supporting the dimorphic niches hypothesis. At a lower temperature, female development time increased and male body size decreased with increasing density. Because there was no food limitation, we conclude that interference competition hampered development. By contrast to expectations, mortality decreased with increasing density, suggesting that interference did not negatively affect survival. The present study shows that sex‐specific niche optima may be a major trigger of sexual dimorphisms. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 48–57.  相似文献   

19.
Rensch’s rule refers to a pattern in sexual size dimorphism (SSD) in which SSD increases with body size when males are the larger sex and decreases with body size when females are the larger sex. Using data on body size from 40 populations and age from 31 populations of the rice frog Rana limnochari with female-biased size dimorphism, I tested the consistency of allometric relationships between males and females with Rensch’s rule and evaluated the hypothesis that SSD was largely a function of age differences between the sexes. Statistical comparisons of body sizes between the sexes showed the evidence for the inverse of Rensch’s rule, indicating the level of SSD increased with increasing mean body size. One of the explanations for the occurrence of the inverse of Rensch’s rule may be the fecundity selection hypothesis assuming increased reproductive output in large females. However, differences in age between males and females among populations could explain mildly the variation in SSD.  相似文献   

20.
There are numerous hypotheses to explain the evolution of sexual dimorphism in spiders. One of the most controversial is the differential mortality model (DMM) which proposes that differing rates of (adult) male and female mortality can result in a skewed operational sex ratio and lead to the evolution of small males. This hypothesis has been examined using a comparative approach which assumes that the behaviour of males and females could be used as a surrogate measure of mortality. We tested this assumption using two model species, Hogna helluo and Pardosa milvina (Araneae: Lycosidae) that differ in the degree of sexual dimorphism both in terms of body size and level of activity. Our data demonstrate that differences in male and female behaviour are not predictive of differences in mortality. Rather, as in other organisms, mortality is a complex phenomenon dependent on activity as well as size. These data call into question the methods previously used to test the DMM and suggest that understanding sexual size dimorphism (SSD) in spiders will require evaluation of historical constraints as well as how size currently influences fitness in each sex.  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 78 , 97−103.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号