首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of 11 acylated cyanidin 3-sophoroside-5-glucosides (pigments 1-11), isolated from the flowers of Iberis umbellata cultivars (Cruciferae), were elucidated by chemical and spectroscopic methods. Pigments 1-11 were acylated with malonic acid, p-coumaric acid, ferulic acid, sinapic acid and/or glucosylhydroxycinnamic acids.Pigments 1-11 were classified into four groups by the substitution patterns of the linear acylated residues at the 3-position of the cyanidin. In the first group, pigments 1-3 were determined to be cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 1, ferulic acid for pigment 2 and sinapic acid for pigment 3. In the second one, pigments 4-6 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 4, ferulic acid for pigment 5 and sinapic acid for pigment 6. In the third one, pigments 7-9 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 7, ferulic acid for pigment 8, and sinapic acid for pigment 9. In the last one, pigments 10 and 11 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were none for pigment 10 and ferulic acid for pigment 11.The distribution of these pigments was examined in the flowers of four cultivars of I. umbellata by HPLC analysis. Pigment 1 acylated with one molecule of p-coumaric acid was dominantly observed in purple-violet cultivars. On the other hand, pigments (9 and 11) acylated with three molecules of hydroxycinnamic acids were observed in lilac (purple-violet) cultivars as major anthocyanins. The bluing effect and stability on these anthocyanin colors were discussed in relation to the molecular number of hydroxycinnamic acids in these anthocyanin molecules.  相似文献   

2.
A novel tetra-acylated cyanidin 3-sophoroside-5-glucoside was isolated from the purple-violet flowers of Moricandia arvensis (L.) DC. (Family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-6-O-(trans-caffeoyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

3.
Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(acyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-β-glucopyranoside]-7-O-cellobioside-4′-O-glucopyranoside as the main flavonol pigment.On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H2O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] + at 2102 m/z (C93H105O55 calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.  相似文献   

4.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(β- -xylopyranosyl)-β- -glucopyranoside]-5-O-β- -glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3 %) and cyanidin 3-glucoside (2.1 %).  相似文献   

5.
Five anthocyanins, cyanidin 3-(2′′-(6′′′-caffeoyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, cyanidin 3-(2′′-(6′′′-E-sinapoyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, cyanidin 3-(2′′-(6′′′-feroyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, pelargonidin 3-(2′′-(6′′′-E-sinapoyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, and pelargonidin 3-(2′′-(6′′′-E-p-coumaroyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, together with five known anthocyanins have been identified in flowers of Cleome hassleriana Queen line. One monoacylated and four diacylated cyanidin 3-sophoroside-5-glucosides were identified as the main anthocyanins in flowers with mauve colouration, while a homologous glycosidic pattern based on pelargonidin was found in the five main anthocyanins from flowers with pink colouration. The anthocyanins identified in C. hassleriana share the same glycosidic pattern as anthocyanins isolated from the genera Raphanus, Brassica and Iberis in the sister family Brassicaceae.  相似文献   

6.
Li JB  Hashimoto F  Shimizu K  Sakata Y 《Phytochemistry》2008,69(18):3166-3171
Five anthocyanins, cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(Z)-p-coumaroyl)-β-galactopyranoside (2), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-p-coumaroyl)-β-galactopyranoside (3), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-caffeoyl)-β-galactopyranoside (4), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-galactopyranoside (5), and cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-glucopyranoside (6), together with the known cyanidin 3-O-(2-O-β-xylopyranosyl)-β-galactopyranoside (1), were isolated from red flowers of Camellia cultivar ‘Dalicha’ (Camellia reticulata) by chromatography using open columns. Their structures were subsequently determined on the basis of spectroscopic analyses, i.e., 1H NMR, 13C NMR, HMQC, HMBC, HR ESI-MS and UV-vis.  相似文献   

7.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

8.
Twenty-two ornamental flowers from different Adenium obesum, Mandevilla sanderi, and Nerium oleander cultivars/seedlings were analyzed for the presence of anthocyanins, flavonols, and chlorogenic acid using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major and minor anthocyanins, respectively, in three A. obesum seedlings that had red and red-purple flowers.Cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the major anthocyanin, whereas cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the minor anthocyanins in 8 M. sanderi cultivars that had red and red-purple flowers. Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major anthocyanins, whereas cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the minor anthocyanin in 8 N. oleander cultivars with red and red-purple flowers. Low levels of anthocyanins were detected in the N. oleander and M. sanderi cultivars that had white flowers, and there were no anthocyanins detected in the N. oleander cultivars with yellow flowers. Chlorogenic acid and four flavonols, quercetin 3-O-[6-O-(rhamnosyl)-galactoside], quercetin 3-O-[6-O-(rhamnosyl)-glucoside], kaempferol 3-O-(galactoside), and kaempferol 3-O-[6-O-(rhamnosyl)-galactoside], were identified in the flowers from all 22 cultivars/seedlings investigated.  相似文献   

9.
Populations of Primula auricula L. subsp. auricula from Austrian Alps were studied for flavonoid composition of both farinose exudates and tissue of leaves. The leaf exudate yielded Primula-type flavones, such as unsubstituted flavone and its derivatives, while tissue flavonoids largely consisted of flavonol 3-O-glycosides, based upon kaempferol (3, 4) and isorhamnetin (57). Kaempferol 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (3) and isorhamnetin 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (6) are newly reported as natural compounds. Remarkably, two Primula type flavones were also detected in tissues, namely 3′-hydroxyflavone 3′-O-β-glucoside (1) and 3′,4′-dihydroxyflavone 4′-O-β-glucoside (2), of which (1) is reported here for the first time as natural product. All structures were unambiguously identified by NMR and MS data. Earlier reports on the occurrence of 7,2′-dihydroxyflavone 7-O-glucoside (macrophylloside) in this species could not be confirmed. This structure was now shown to correspond to 3′,4′-dihydroxyflavone 4′-O-glucoside (2) by comparison of NMR data. Observed exudate variations might be specific for geographically separated populations. The structural diversification between tissue and exudate flavonoids is assumed to be indicative for different ecological roles in planta.  相似文献   

10.
《Phytochemistry》1999,52(2):351-355
A new acylated anthocyanin was isolated from a strain of Petunia integrifolia subsp. inflata with dusky violet flowers (B1204d), and identified as malvidin 3-O-[6-O-(4-O-(4-O-(6-O-(trans-caffeoyl)-β-d-glucopyranosyl)-trans-p-coumaroyl)-α-l-rhamnopyranosyl)-β-d-glucopyranoside] as a major pigment. Also, two known pigments were found in these flowers, and determined to be malvidin 3-caffeoylrutinoside and 3-p-coumaroylrutinoside.  相似文献   

11.
Acylated malvidin 3-glucoside was isolated from the purple flowers of Impatiens textori Miq. as a major anthocyanin component along with malvidin 3-(6″-malonyl-glucoside). Its structure was elucidated to be malvidin 3-O-[6-O-(3-hydroxy-3-methylglutaryl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

12.
In order to conduct metabolomic studies in a model plant for genome research, such as Arabidopsis thaliana (Arabidopsis), it is a prerequisite to obtain structural information for the isolated metabolites from the plant of interest. In this study, we isolated metabolites of Arabidopsis in a relatively non-targeted way, aiming at the construction of metabolite standards and chemotaxonomic comparison. Anthocyanins (5 and 7) called A8 and A10 were isolated and their structures were elucidated as cyanidin 3-O-[2-O-(β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[6-O-(malonyl)-β-d-glucopyranoside] and cyanidin 3-O-[2-O-(2-O-(E-sinapoyl)-β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[β-d-glucopyranoside] from analyses of 1D NMR, 2D NMR (1H NMR, NOE, 13C NMR, HMBC and HMQC), HRFABMS, FT-ESI-MS and GC-TOF-MS data. In addition, 35 known compounds, including six anthocyanins, eight flavonols, one nucleoside, one indole glucosinolate, four phenylpropanoids and a derivative, together with three indoles, one carotenoid, one apocarotenoid, three galactolipids, two chlorophyll derivatives, one steroid, one hydrocarbon, and two dicarboxylic acids, were also isolated and identified from their spectroscopic data.  相似文献   

13.
Glycosides, 3-acetyl-(?)-epicatechin 7-O-β-glucopyranoside (1), 3-acetyl-(?)-epicatechin 7-O-(6-isobutanoyloxyl)-β-glucopyranoside (2), 3-acetyl-(?)-epicatechin 7-O-[6-(2-methyl-butanoyloxyl)]-β-glucopyranoside (3), (5Z)-6-[5-(2-hydroxypropan-2-yl)-2-methyl-tetrahydrofuran-2-yl]-3-methylhexa-1,5-dien-3-O-β-glucopyranoside (4), hydroquinone O-[6-(3-hydroxyisobutanoyl)]-β-galactopyranoside (5), 4-(4-O-β-glucopyranosyl-phenoxy)-1-O-β-glucopyranosyl-1,3-benzenediol (6), 7,8-erythro-dihydroxy-3,4,5-trimethoxy-phenyl-propane8-O-β-glucopyranoside (7), 6,7-dimethylbenzofuranol 5-O-β-xylopyranosyl-(1  6)-β-glucopyranoside (8), along with 30 known glycosides, were isolated from Breynia fruticosa and Breynia rostrata (Euphorbiaceae). Their structures were determined on the basis of spectroscopic analysis and chemical methods.  相似文献   

14.
Seven acylated cyanidin 3-sambubioside-5-glucosides were isolated from the flowers of three garden plants in the Cruciferae. Specifically, four pigments were isolated from Lobularia maritima (L.) Desv., together with a known pigment, as well as, three pigments from Lunaria annua L., and two known pigments from Cheiranthus cheiri L. These pigments were determined to be cyanidin 3-O-[2-O-((acyl-II)-(beta-d-xylopyranosyl))-6-O-(acyl-I)-beta-d-glucopyranoside]-5-O-[6-O-(acyl-III)-beta-d-glucopyranoside], in which the acyl-I group is represented by glucosyl-p-coumaric acid, p-coumaric acid and ferulic acid, acyl-II by caffeic acid and ferulic acid, and acyl-III by malonic acid, respectively. The distribution and biosynthesis of acylated cyanidin 3-sambubioside-5-glucosides are discussed according to the variations of acylation and glucosylation at their 3-sambubiose residues.  相似文献   

15.
Two novel delphinidin 3-(tri or di)-glycoside-7-glycosides were isolated from the violet–blue flowers of Vinca minor L. and V. major L. (Family: Apocynaceae), and determined to be delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(α-rhamnopyranosyl)-β-galactopyranoside]-7-O-(α-rhamnopyranoside) [= delpphinidin 3-(2G-xylosylrobinobioside)-7-rhamnoside] as major floral anthocyanin of V. minor and delphinidin 3-O-[6-O-(α-rhamnopyranosyl)-β-galactopyranoside]-7-O-(α-rhamnopyranoside) [= delpphinidin 3-robinobioside-7-rhamnoside] as major floral anthocyanin of V. major by chemical and spectroscopic methods. In addition, chlorogenic acid and kaempferol 3-O-[6-O-(α-rhamnopyranosyl)-β-galactopyranoside]-7-O-(α-rhamnopyranoside) [= kaempferol 3-robinobioside-7-rhamnoside (robinin)] were identified in these flowers. In this paper, the relation between the structure of floral anthocyanins and classification of Vinca species was discussed.  相似文献   

16.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   

17.
Two new steroid glycosides from the starfish Fromia milleporella collected in the Seychelles were isolated and characterized: milleporoside A, (20R, 24R)-29-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-ethyl-5α-cholestane-3β,4β,6α,8,15β,16β,29-heptaol, and milleporoside B, (20R, 24R)-(22E)-28-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,28-heptaol. The structures of the glycosides were determined from their spectra and a comparison with spectral characteristics of known compounds. These compounds exhibit a moderate cytostatic activity toward the embryos of the sea urchin Strongylocentrotus intermedius.  相似文献   

18.
A bio-guided fractionation of the 80% aqueous ethanolic extract of the aerial parts of Silene gallica L. (Caryophyllaceae), growing in North-Eastern Algeria, was performed to evaluate its antioxidant activity using DPPH, hydroxyl radical scavenging and CUPRAC assays. Successive chromatographic separations of the most antioxidant n-BuOH soluble fraction yielded four acylated flavone C-glycosides, vitexin 2''-O-β-d-(4''',6'''-di-acetyl)-glucopyranoside (1), orientin-2''-O-β-d-(4''',6'''-di-acetyl)-glucopyranoside (2), orientin-2''-O-β-d-(6'''-feruloyl)-glucopyranoside (3), and orientin-2''-O-β-d-(6'''-sinapoyl)-glucopyranoside (4), as well as six known compounds including four flavonoids (5-8), a phenylpropanoid glycerolglucoside (regaloside A) (9), and a phytoecdysteroide (20-hydroxyecdysone) (10). Their structures were established by UV, 1D, 2D NMR, and HR-ESI-MS spectral data, in addition to comparison with literature data. The antioxidant activity of the crude extracts, fractions and compounds 1-8 was evaluated. Two acylated orientin glycosides (3 and 4) displayed the strongest antioxidant activity.  相似文献   

19.
Blue flowers of six Bhutani Meconopsis species, M. bhutanica, M. bella, M. horridula, M. simplicifolia, M. primulina and M. polygonoides, were surveyed for anthocyanins and other flavonoids. Four anthocyanins were isolated and identified as cyanidin 3-O-sambubioside-7-O-glucoside (1), cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)]-7-O-glucoside (2), cyanidin 3-O-sambubioside (4) and cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)] (5). On the other hand, 12 flavonols were isolated from their Meconopsis species with various combination and characterized as kaempferol 3-O-glycosides (812), kaempferol 3,7-O-glycosides (1316), quercetin 3-O-glycosides (17 and 18) and isorhamnetin 3-O-glycoside (19). Of six Meconopsis species which were surveyed in this experiment, anthocyanin and flavonol composition of five species except for M. horridula was clarified for the first time. Their Meconopsis species showed the different flavonoid profiles, respectively, and flavonoid diversity within the glycosylation level of Meconopsis flowers were indicated.  相似文献   

20.
Flavones and flavone glycosides from Halophila johnsonii   总被引:1,自引:0,他引:1  
Halophila johnsonii Eiseman is a shallow-water marine angiosperm which contains UV-absorbing metabolites. Studies on methanol extracts of H. johnsonii by means of HPLC-UV, NMR, HPLC-MS resulted in isolation and identification of seven previously unknown flavone glycosides: 5,6,7,3′,4′,5′-hexahydroxyflavone-7-O-β-glucopyranoside (1), 5,6,7,3′,4′,5′-hexahydroxyflavone-7-O-(6″-O-acetyl)-β-glucopyranoside (2), 6-hydroxyluteolin-7-O-(6″-O-acetyl)-β-glucopyranoside (3), 6-hydroxyapigenin-7-O-(6″-O-acetyl)-β-glucopyranoside (4), 6-hydroxyapigenin-7-O-(6″-O-[E]-coumaroyl)-β-glucopyranoside (5), 6-hydroxyapigenin-7-O-(6″-O-[E]-caffeoyl)-β-glucopyranoside (6) and 6-hydroxyluteolin-7-O-(6″-O-[E]-coumaroyl)-β-glucopyranoside (7). Also isolated were three known flavone glycosides, 6-hydroxyluteolin 7-O-β-glucopyranoside (8), scutellarein-7-O-β-glucopyranoside (9), and spicoside (10), and five known flavones, pedalitin (11), ladanetin (12), luteolin (13), apegenin (14) and myricetin (15). Qualitative comparison of the flavonoid distribution in the leaf and rhizome-root portions of the plant was also investigated, with the aim of establishing the UV-protecting roles that flavonoids played in the sea grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号