首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
果蝇在抉择过程中的行为修饰   总被引:1,自引:0,他引:1  
在视觉操作条件化中, 果蝇具有惟一的行为输出——偏转扭矩, 扭矩输出参与了条件化的形成. 通过发展新的分析方法, 分析了果蝇在条件化过程中的扭矩分布模式. 果蝇扭矩分布模式的修饰过程反映了操作条件化对果蝇行为模式的影响. 先前的研究表明, 在果蝇的视觉操作条件化中, 面对矛盾的视觉线索时, 果蝇将依据不同线索的相对权重作出类似抉择的行为; 研究还表明, 果蝇脑内的蘑菇体结构在这种抉择中起重要作用. 通过对果蝇在这种类抉择行为中的扭矩输出进行“扭矩-位置分布”分析, 研究了在果蝇抉择过程中的行为模式的修饰过程. 利用这种扭矩分析方法, 得以从揭示果蝇行为模式的角度对果蝇操作式视觉联想式学习及抉择行为进行研究. 在对果蝇操作条件化中的视觉联想式学习过程、抉择过程以及行为模式修饰过程进行分析的同时, 也讨论了它们所涉及的可能不同的神经基础.  相似文献   

2.
利用闭环飞行模拟系统研究果蝇视觉飞行定向行为的操作式条件化 ,证明正常果蝇视觉学习记忆能力与日龄有关 ,即 3~ 4d龄果蝇的学习记忆能力明显优于1~ 2d龄果蝇 ,蝇脑内的cAMP含量也呈现随果蝇日龄增加而增加的趋势 .同时对学习记忆缺陷型果蝇进行检测 ,其脑内cAMP含量高于正常对照组果蝇 .通过喂食PDEase抑制剂咖啡因扰乱cAMP代谢 ,使果蝇cAMP水平异常提高 ,导致果蝇学习记忆能力显著下降 ,表明果蝇视觉学习记忆需要脑内cAMP水平处于一适当范围 ,过高或过低的cAMP水平都将影响果蝇的视觉学习记忆能力  相似文献   

3.
《生命科学》2007,19(3):337-337
利用先期学习所得的经验来调整随后的认知行为可以体现人类或者动物的某种高级智慧。最近,郭爱克研究员带领其研究小组经过三年多的研究发现:果蝇利用先期学习的经验可以显著提高其随后的视觉特征抽提能力。视觉特征抽提是一种从多个视觉特征(如形状、颜色)中选择关键特征的能力。  相似文献   

4.
全面揭示脑的奥秘是现代科学所面临的最大挑战.通过脑研究,我们可以获得防治脑疾病、认知及心理障碍的线索和工具,找到提高人类智力和心理健康水平的途径,并发展出具备高等智能的机器人.果蝇作为研究基因-神经回路-行为关系的首选模式动物,日益得到重视.本文围绕果蝇复杂脑功能包括视觉学习记忆、欲望与动机、情感相关行为和社会行为的研究意义及前景、已知调控基因及神经回路以及未来研究方向展开综述,便于读者把握相关领域的全貌.  相似文献   

5.
视觉运动信息的感知过程,包括从局域运动检测到对模式整体运动的感知过程.我们以蝇视觉系统的图形-背景相对运动分辨的神经回路网络为基本框架,采用初级运动检测器的六角形阵列作为输入层,构造了一种感知视觉运动信息的简化脑模型,模拟了运动信息应该神经计算模型各个层次上的处理.该模型对差分行为实验结果作出了正确预测.本文并对空间生理整合的神经机制作了讨论.  相似文献   

6.
果蝇学习记忆行为的分子机制   总被引:3,自引:0,他引:3  
分子遗传学技术的应用一方面发展了新的神经组织学方法,使果蝇脑中的细微结构得以展示;另一方面,对记忆从形成到提取过程中信息处理的研究,表明蘑菇体可能在形成长时程记忆方面起重要作用,而一对背内侧核团(dorsal paired medial cells)与蘑菇体之间的信息传递对于记忆的“提取(retrieval)”是至关重要的.行为功能检测为视觉信号整和的研究提供了新的实验依据,从而使果蝇蘑菇体的高级脑中枢功能逐渐被揭示出来.  相似文献   

7.
我们用经典的Sherrington模型构建了一个以食物环境为输入,果蝇产卵行为为输出的神经行为学模型,并且对这个模型的敏感性以及可塑性进行了探索性研究.通过给果蝇提供不同的食物成分和浓度,我们发现,果蝇在不同浓度的食物上产卵量有明显偏好差异,并表现出很好的敏感性和稳定性.而当阻断了果蝇的嗅觉感受神经元后,产卵的浓度偏好受到了影响.另一方面,我们用经典条件化的学习方式对果蝇的产卵行为进行训练后,发现果蝇也可以学会将光照条件和产卵行为偶联起来.这也证明了这个模型具有很好的可塑性.这个模型将为今后进一步研究果蝇食物偏好、产卵行为、条件化学习等的神经和分子机制奠定良好的基础.  相似文献   

8.
人们对智力本质和它的进化史知之尚少.智力的"演化与选择"机制是一个非常重要的科学命题.本文从跨物种和跨尺度的角度研讨了6个重要的脑认知功能神经回路:(ⅰ)果蝇的基于价值的抉择;(ⅱ)学习记忆的去抑制机制;(ⅲ)视觉和嗅觉的跨模态学习与记忆;(ⅳ)电突触参与视觉学习;(ⅴ)模式分割的去相关性机制;(ⅵ)多稳态视觉感知机制.本文还从以上脑认知功能和脑结构在物种间的相似和演进出发,强调了开展跨物种和跨越不同空间尺度的脑科学研究的重要性和必要性.  相似文献   

9.
李朔 《生命世界》2005,(8):16-19
看到汽车闻到汽油味,可以加深你对汽车的印象;而看到汽车闻到奶酪味,则不会有同样的效果。中国科学家对果蝇的最新实验证实,当果蝇同时使用嗅觉和视觉时,学习记忆的效果明显强于单一使用嗅觉或视觉。这一发现不仅朝果蝇的"认知世界"又迈近了一步,同时也可能为指导人类的学习和记忆提供新的科学依据。该成果发表在7月8日出版的《科学》杂志上。  相似文献   

10.
突变型小鼠在学习记忆研究中的应用   总被引:1,自引:0,他引:1  
本文简要介绍了利用利用突变型小鼠研究学习和记忆的最新进展。提出了行为模型的选择对研究学习和记忆的重要性。在发育的不同时期研究突变型小鼠的行为,将为我们提供有关在发育过程中基因与行为相关性的信息,并有助于我们更全面地了解该基因的功能。  相似文献   

11.
Because of its clear genetic and developmental background, diversity of behavioral paradigms and neuroanatomy of the brain, Drosophila has become an important animal model for studying genetic, molecular and cellular bases of learning and memory[1]. Extensive research has explored the visual operant conditioning of Drosophila and related molecular bases[2—8]; recently, researchers began to address cognition-like functions and involved neural substrates[9—11]. In these studies, behavioral ana…  相似文献   

12.
 The visual homing abilities of insects can be explained by the snapshot hypothesis. It asserts that an animal is guided to a previously visited location by comparing the current view with a snapshot taken at that location. The average landmark vector (ALV) model is a parsimonious navigation model based on the snapshot hypothesis. According to this model, the target location is unambiguously characterized by a signature vector extracted from the snapshot image. This article provides threefold support for the ALV model by synthetic modeling. First, it was shown that a mobile robot using the ALV model returns to the target location with only small position errors. Second, the behavior of the robot resembled the behavior of bees in some experiments. And third, the ALV model was implemented on the robot in analog hardware. This adds validity to the ALV model, since analog electronic circuits share a number of information-processing principles with biological nervous systems; the analog implementation therefore provides suggestions for how visual homing abilities might be implemented in the insect's brain. Received: 15 June 1999 / Accepted in revised form: 20 March 2000  相似文献   

13.
In visual operant conditioning ofDrosophila at the flight simulator, only motor output of flies—yaw torque—is recorded, which is involved in the conditioning process. The current study used a newly-designed data analysis method to study the torque distribution ofDrosophila. Modification of torque distribution represents the effects of operant conditioning on flies’ behavioral mode. Earlier works[10] showed that, when facing contradictory visual cues, flies could make choices based upon the relative weightiness of different cues, and it was demonstrated that mushroom bodies might play an important role in such choice behavior. The new “torque-position map” method was used to explore the CS-US associative learning and choice behavior inDrosophila from the aspect of its behavioral mode. Finally, this work also discussed various possible neural bases involved in visual associative learning, choice processing and modification processing of the behavioral mode in the visual operant conditioning ofDrosophila.  相似文献   

14.
We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as 'small target motion detectors' (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1(st) order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear 'matched filter' to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues.  相似文献   

15.
To elucidate the dynamic information processing in a brain underlying adaptive behavior, it is necessary to understand the behavior and corresponding neural activities. This requires animals which have clear relationships between behavior and corresponding neural activities. Insects are precisely such animals and one of the adaptive behaviors of insects is high-accuracy odor source orientation. The most direct way to know the relationships between neural activity and behavior is by recording neural activities in a brain from freely behaving insects. There is also a method to give stimuli mimicking the natural environment to tethered insects allowing insects to walk or fly at the same position. In addition to these methods an ‘insect–machine hybrid system’ is proposed, which is another experimental system meeting the conditions necessary for approaching the dynamic processing in the brain of insects for generating adaptive behavior. This insect–machine hybrid system is an experimental system which has a mobile robot as its body. The robot is controlled by the insect through its behavior or the neural activities recorded from the brain. As we can arbitrarily control the motor output of the robot, we can intervene at the relationship between the insect and the environmental conditions.  相似文献   

16.
王鹏  张龙 《环境昆虫学报》2021,43(3):633-641
植食性昆虫的嗅觉在其选择食物的过程中发挥了重要的作用,它能通过对植物挥发物的感受来定向和定位食物源并产生趋近行为,进而根据特殊的化合物或者多种化合物的特异浓度组合来区分寄主和非寄主植物.在这个过程中,昆虫嗅觉器官上相关的嗅觉感受蛋白被植物挥发物激活,形成特异的嗅觉感受通路,在行为上调控昆虫嗅觉选食的能力.本文主要从植食性昆虫嗅觉选食过程中植物挥发物的散布特征、昆虫识别植物信息的嗅觉感受机制及其相关的分子基础等方面进行叙述,同时讨论了近年的研究成果并展望了下一步的研究方向.  相似文献   

17.
Foraging strategies of birds can influence trophic plant–insect networks with impacts on primary plant production. Recent experiments show that some forest insectivorous birds can use herbivore‐induced plant volatiles (HIPVs) to locate herbivore‐infested trees, but it is unclear how birds combine or prioritize visual and olfactory information when making foraging decisions. Here, we investigated attraction of ground‐foraging birds to HIPVs and visible prey in short vegetation on farmland in a series of foraging choice experiments. Birds showed an initial preference for HIPVs when visual information was the same for all choice options (i.e., one experimental setup had all options with visible prey, another setup with hidden prey). However, if the alternatives within an experimental setup included visible prey (without HIPV) in competition with HIPV‐only, then birds preferred the visual option over HIPVs. Our results show that olfactory cues can play an important role in birds’ foraging choices when visual information contains little variation; however, visual cues are preferred when variation is present. This suggests certain aspects of bird foraging decisions in agricultural habitats are mediated by olfactory interaction mechanisms between birds and plants. We also found that birds from variety of dietary food guilds were attracted to HIPVs; hence, the ability of birds to use plant cues is probably more general than previously thought, and may influence the biological pest control potential of birds on farmland.  相似文献   

18.
The human visual system has evolved to be highly sensitive to visual information about other persons and their movements as is illustrated by the effortless perception of point-light figures or ‘biological motion’. When presented orthographically, a point-light walker is interpreted in two anatomically plausible ways: As ‘facing the viewer’ or as ‘facing away’ from the viewer. However, human observers show a ‘facing bias’: They perceive such a point-light walker as facing towards them in about 70-80% of the cases. In studies exploring the role of social and biological relevance as a possible account for the facing bias, we found a ‘figure gender effect’: Male point-light figures elicit a stronger facing bias than female point-light figures. Moreover, we also found an ‘observer gender effect’: The ‘figure gender effect’ was stronger for male than for female observers. In the present study we presented to 11 males and 11 females point-light walkers of which, very subtly, the perspective information was manipulated by modifying the earlier reported ‘perspective technique’. Proportions of ‘facing the viewer’ responses and reaction times were recorded. Results show that human observers, even in the absence of local shape or size cues, easily pick up on perspective cues, confirming recent demonstrations of high visual sensitivity to cues on whether another person is potentially approaching. We also found a consistent difference in how male and female observers respond to stimulus variations (figure gender or perspective cues) that cause variations in the perceived in-depth orientation of a point-light walker. Thus, the ‘figure gender effect’ is possibly caused by changes in the relative locations and motions of the dots that the perceptual system tends to interpret as perspective cues. Third, reaction time measures confirmed the existence of the facing bias and recent research showing faster detection of approaching than receding biological motion.  相似文献   

19.
Very little is known about how nocturnal primates find their food. Here we studied the sensory basis of food perception in wild-caught gray mouse lemurs (Microcebus murinus) in Madagascar. Mouse lemurs feed primarily on fruit and arthropods. We established a set of behavioral experiments to assess food detection in wild-born, field-experienced mouse lemurs in short-term captivity. Specifically, we investigated whether they use visual, auditory, and motion cues to find and to localize prey arthropods and further whether olfactory cues are sufficient for finding fruit. Visual cues from motionless arthropod dummies were not sufficient to allow reliable detection of prey in choice experiments, nor did they trigger prey capture behavior when presented on the feeding platform. In contrast, visual motion cues from moving prey dummies attracted their attention. Behavioral observations and experiments with live and recorded insect rustling sounds indicated that the lemurs make use of prey-generated acoustic cues for foraging. Both visual motion cues and acoustic prey stimuli on their own were sufficient to trigger approach and capture behavior in the mouse lemurs. For the detection of fruit, choice experiments showed that olfactory information was sufficient for mouse lemurs to find a piece of banana. Our study provides the first experimental data on the sensory ecology of food detection in mouse lemurs. Further research is necessary to address the role of sensory ecology for food selection and possibly for niche differentiation between sympatric Microcebus species.  相似文献   

20.
Mate choice for compatible genes is often based on genes of the major histocompatibility complex (MHC). Although MHC‐based mate choice is commonly observed in female choice, male mate choice remains elusive. In particular, if males have intense paternal care and are thus the choosing sex, male choice for females with dissimilar MHC can be expected. Here, we investigated whether male mate choice relies on MHC class I genes in the sex‐role reversed pipefish Syngnathus typhle. In a mate choice experiment, we determined the relative importance of visual and olfactory cues by manipulating visibility and olfaction. We found that pipefish males chose females that maximize sequence‐based amino acid distance between MHC class I genotypes in the offspring when olfactory cues were present. Under visual cues, large females were chosen, but in the absence of visual cues, the choice pattern was reversed. The use of sex‐role reversed species thus revealed that sexual selection can lead to the evolution of male mate choice for MHC class I genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号