首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   17篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   9篇
  2015年   12篇
  2014年   10篇
  2013年   83篇
  2012年   23篇
  2011年   36篇
  2010年   17篇
  2009年   20篇
  2008年   24篇
  2007年   24篇
  2006年   22篇
  2005年   33篇
  2004年   31篇
  2003年   29篇
  2002年   14篇
  2001年   10篇
  2000年   3篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1992年   6篇
  1991年   7篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   8篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有552条查询结果,搜索用时 343 毫秒
1.
Effects of water-soluble matter adhering to rat hairs on fibroblasts were examined. The dialysate of the wash water of rat hairs significantly enhanced the cell proliferation of both diploid human dermal fibroblasts (DHDF) and diploid rat fibroblasts (DRDF). The cell growth-promoting activity was partially purified by a gel filtration column chromatography. The activity permeates through a ultrafiltration membrane (M.W. cut off: 500). Analyses of its chemical nature show that it is soluble in water, dimethyl sulfoxide or acetonitrile, insoluble in other organic solvents examined, stable to heat or pH shock, and resistant to a bacterial protease.  相似文献   
2.
To examine the hypothesis that interleukin-1 may inhibit the secretion of gastric acid, the present study was carried out using pylorusligated rats. Based upon three lines of evidence, we report here that interleukin-1, both endogenously released and exogenously administered, suppresses gastric acid secretion and that the interleukin-1-induced inhibition of acid output is possibly mediated by prostaglandin. First, lipopolysaccharide, a potent stimulant of the release and production of endogenous interleukin-1, caused the suppression of gastric acid, and this response was dose-related. Second, the intraperitoneal injection of interleukin-1 resulted in a dose-related inhibition of gastric acid output. Third, the administration of indomethacin completely blocked the suppression of gastric acid secretion induced by interleukin-1. These results demonstrated for the first time that IL-1 might be involved in the regulation of gastric secretion.  相似文献   
3.
Summary Genetic heterogeneity in peroxisome-deficient disorders, including Zellweger's cerebrohepatorenal syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease, was investigated. Fibroblasts from 17 patients were fused using polyethylene glycol, cultivated on cover slips, and the formation of peroxisomes in the fused cells was visualized by immunofluorescence staining, using anti-human catalase IgG. Two distinct staining patterns were observed: (1) peroxisomes appeared in the majority of multinucleated cells, and (2) practically no peroxisomes were identified. Single step 12-(1-pyrene) dodecanoic acid/ultraviolet (P12/UV)-selection confirmed that the former groups were resistant to this selection, most of the surviving cells contained abundant peroxisomes, and the latter cells died. In the complementary matching, [1-14C]lignoceric acid oxidation and the biosynthesis of peroxisomal proteins were also normalized. Five complementation groups were identified. Group A: Zellweger syndrome and infantile Refsum disease; Groups B, C and D: Zellweger syndrome; Group E: Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease. We compared these groupings with those of Roscher and identified eight complementation groups. There was no obvious relation between complementation groups and clinical phenotypes. These results indicate that the transport, intracellular processing and function of peroxisomal proteins were normalized in the complementary matching and that at least eight different genes are involved in the formation of normal peroxisomes and in the transport of peroxisomal enzymes.  相似文献   
4.
Renal microsomes from male mice (BALB/c, DBA/2 and BALB/c x DBA/2 F1) showed about 10-fold greater activity for mediating mutagenic activation of 3-methoxy-4-aminoazobenzene (3-MeO-AAB) toward Salmonella typhimurium TA98 than did the corresponding hepatic microsomes, as compared on the basis of nmol of microsomal cytochrome P-450. On the other hand, female renal microsomes and other extrahepatic microsomes (lung, small intestine and colon) in both sexes of mice showed little or no activity for converting 3-MeO-AAB to mutagen(s). The mutagenic activation of 3-MeO-AAB with the male renal enzyme(s) was definitely inhibited by cytochrome P-450 inhibitors, 7,8-benzoflavone and SKF 525A. All these findings suggest that in mice, there is a male-specific renal 3-MeO-AAB activation enzyme(s), a cytochrome P-450 isozyme(s), which is different, at least in proportion and/or in nature, from hepatic cytochrome P-450 isozymes.  相似文献   
5.
It seems established that under pathological conditions, microglia and blood monocytes (invading the cerebral parenchyma) behave as histiocytic cells in the central nervous system. However, it has not been clear whether or not phagocytic cells are present in normal cerebral tissue. Recently, we found a new type of cell having an uptake capacity for exogenous substance at the bifurcations of small cerebral vessels except for capillaries. According to Imamoto et al. (1982), ameboid microglia, a kind of precursor of microglia, appear at a perinatal stage and can incorporate exogenous material. In the present paper, the developmental sequences of ameboid microglia and the unique cells laden with fluorescent granules are compared at a light and electron-microscopic level. From this study, it is clear that ameboid microglia are already present in the corpus callosum at 5 days after birth and are potent in their uptake capacity for horseradish peroxidase (HRP). However, at 2 weeks, they transform into star cells and the capacity for incorporation diminishes markedly. The finding is also supported by the quantitative analysis of transformation of ameboid microglia. At 3 months, glial cells do not take the administered HRP under the present conditions. On the other hand, fluorescent granular perithelial (FGP) cells arise from a leptomeningeal tissue (pia mater) and become situated in the perivascular spaces. They are not clearly defined at 5 days, and their uptake capacity for HRP has not yet developed. At 2 weeks, the FGP cells take definite forms with several inclusion bodies, and their uptake capacity for HRP attains a certain degree. Often, they are located at bifurcations of small blood vessels. At 3 months, the FGP cells differentiate completely in appearance, and their pinocytotic capacity reaches a high level. Consequently, the FGP cells belong to a different type of cell from that of ameboid microglia in their developmental sequences and assume a principal role of scavenging waste products in normal cerebral tissue.  相似文献   
6.
7.
A significant circadian rhythm of acute toxicity was demonstrated in mice with intraperitoneal (i.p.) injection of sodium valproate (VPA). The role of pharmacokinetics on the rhythms of the toxicity and electroshock seizure (ES) threshold was investigated. ICR male mice, housed under a light-dark (12 :12) cycle, were injected intraperitoneally 1200 mg/kg for the acute toxicity study and 300 mg/kg for the anticonvulsant effect study. In the acute toxicity, the highest mortality was found when VPA was injected at 1700 and the lowest at 0900 or 0100. The time course of mean plasma and brain VPA concentrations after an injection of VPA was not different between mice injected at 1700 and mice injected at 0100. In the anticonvulsant effect, no significant circadian rhythm was demonstrated for both the ES threshold and the plasma VPA concentrations after i.p. Injection, although a significant rhythm has been reported for them after oral administration. The results suggest that the circadian rhythm in the mortality after an i.p. Injection of VPA may be due to the rhythm in the sensitivity of the central nervous system to the drug and that the mechanism underlying the rhythm of VPA acute toxicity is different from that of the anticonvulsant action of VPA. The route and the time of drug administration are essentially important to study the anticonvulsant effect and acute toxicity of VPA in mice.  相似文献   
8.
(WB X C57BL/6)F1-W/Wv (hereafter, WBB6F1-W/Wv) mice and (WC X C57BL/6)F1-Sl/Sld (hereafter, WCB6F1-Sl/Sld) mice are sterile due to the deficient spermatogenesis in the testes. The cause of deficient spermatogenesis in WBB6F1-W/Wv mice is considered to be a defect in germ cells themselves, whereas that in WCB6F1-Sl/Sld mice is considered to be a defect in tissue environment necessary for differentiation of germ cells. Seminiferous tubules isolated from cryptorchid testes of C57BL/6- +/+ mice were transplanted into the testes of WBB6F1-W/Wv and WCB6F1-Sl/Sld mice to clarify that the extratubular environment of these mice was intact or not. Type A spermatogonia in the transplanted tubules normally differentiated into spermatids, suggesting that the extratubular environment is intact in both WBB6F1-W/Wv and WCB6F1-Sl/Sld mice.  相似文献   
9.
Summary Silica glass-entrapped lipase was prepared by the sol-gel method using tetramethoxysilane, and its esterification activity in n-hexane was examined for isoamylbutyrate formation. The hydrogel preparation containing a large amount of water exhibited enough activity. Although the activity of xerogel-entrapped lipase drastically decreased probably due to shrinkage of the gel matrix, the lyophilized gel retained much higher activity than the air-dried gel.  相似文献   
10.
The human FcRI gene encodes for a highaffinity Fc receptor that plays pivotal roles in the immune response. We have used fluorescence in situ hybridization analysis to localize the FcRI gene to human chromosome 1. The human FcRI (CD64) gene has been assigned to human chromosome 1q21.2-q21.3 using R-banded human (pro)metaphase chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号