首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A system was developed for protoplast isolation and culture from suspension cultured cells of winged bean,Psophocarpus tetragonolobus. Cells from a three-day-old suspension were incubated in an enzyme mixture containing 6% cullulysin, 1% Macerase, 1% desalted Rhozyme, 0.4M sorbitol, and 0.1M CaCl2 at pH 5.5. Average yields of protoplasts were 6.5 × 106 per gram fresh weight of cells. Protoplasts were cultured in modified B5 medium containing 68.4 g/l glucose, 250 mg/l xylose, 0.1 mg/l 2,4-D, 0.5 mg/l BAP, 250 mg/l N-Z amine type AS, and 20 ml/l coconut water. After 24 h of culture, the protoplasts had synthesized a new wall, and in three days had begun division. The optimum plating density was 1–2 × 103 protoplasts/ml. The division frequency ranged between 40%–60% for most experiments with a high of 72% in one experiment. After three weeks, cell colonies could be transferred to solid MS medium containing N-Z amine and coconut water where callus developed. This protoplast system is technically comparable to soybean for experiments concerned with genetic manipulation involving legumes.  相似文献   

2.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS) medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid. Regenerated plants have normal morphology.  相似文献   

3.
The optimal conditions necessary for a large yield and a high frequency of regeneration of protoplasts isolated from the biocontrol agentsTrichoderma koningii andT. harzianum were investigated. Protoplast yields were 1.2×108/ml fromT. koningii and 6×107/ml fromT. harzianum when 20-h mycelial culture was treated with a lytic enzyme solution containing Novozym 234 (15 mg/ml), sucrose (0.6 M) and citrate phosphate buffer (0.02 M), pH 5.6 at 31°C. When the protoplasts were grown in the regeneration medium containing yeast extract (1.5%), 1 I of Mandel's salts, pH 5.6, and glucose (0.8 M), a high frequency of regeneration of the protoplast was obseved: 66% forT. koningii and 45% forT. harzianum. Two patterns of regeneration were observed. First, the hyphae arose directly from the regenerated protoplast mother cell. Second, a chain of bud cells developed from the protoplast and subsequently generating hyphae generally protruded from the terminal bud cells.  相似文献   

4.
Studies on protoplast isolation were carried out with mature pollen grains of Tulbaghia violacea Harv. (Liliaceae). Pollen grains drifted from surface sterilized crushed anthers were incubated either in a nonenzymatic solution composed of Nitsch medium and sucrose, or in the same solution supplemented with 1% cellulase Onozuka R-10 and 1% Macerozyme R-10. The process of protoplast release was studied as a function of pH and sucrose concentration of nonenzymatic and enzymatic solutions. For nonenzymatic isolation, the tested range of pH and sucrose concentration was from 3.3 to 13.1 and from 0.015 to 1.12 M (final solution osmolality from 200 to 1,300 mOs kg-1 H2O), respectively. In the former case, the release of protoplasts occurred only at nonphysiological pH (12.2 to 13.1) and could be observed after several seconds to 120 min, depending on pH and sucrose concentration of medium. Under enzymatic incubation, viable protoplasts were released more rapidly (3 to 35 min) and in more physiological conditions, the optimum being pH 5.8 and final medium osmolality 652 mOs kg-1 H2O. Speed, manner of protoplast release, number and quality of protoplasts were dependent on interactions of pH and sucrose concentration.  相似文献   

5.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   

6.
Factors influencing protoplast isolation from Coffea arabica cells   总被引:2,自引:0,他引:2  
Cultured plant cells such as Coffea arabica L. cells, accumulate low concentration of secondary metabolites. One way to obtain high-producing plant cell cultures is to prepare single cell clones by using protoplast systems. Identification of limiting factors should facilitate the development of an isolation procedure that can generate adequate yields of intact and viable protoplasts Coffea arabica L. suspension cells. The most suitable conditions for protoplasting were as follows: 6 g of fresh tissue were plasmolysed in 100 ml of K 3 salts (Nagy & Maliga 1976) containing 0.5 M sucrose for 1 h at 24°C. Then, 1 g of preplasmolysed cells were incubated in 10 ml of cellulase R10 (1%), macerozyme R10 (0.8%) and driselase (0.5%) in preplasmolysis medium. The protoplasts were collected and purified after 15 h of lytic reaction in the dark, at 28°C. More than 75% and 95% of the cells were converted into protoplasts when 5 and 8 day-old suspensions respectively were used for the release step. A number of viable protoplasts ranging from 3.5×106 to 4.6×106 P g-1 fresh weight was obtained corresponding to an increase by a factor 10 to 15 of the protoplast yield obtained by Acuna & De Pena (1991).Abbreviations BAP 6-benzylamino purine - BSA Bovine Serum Albumin - 2,4-d 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - MES 2-(N-morpholino)ethanesulfonic acid - NAA naphthalene acetic acid - PI propidium iodide - PCV Packed Cell Volume - fw fresh weight  相似文献   

7.
Yields of 106–108 peach mesophyll cells and protoplasts · gfw-1 were obtained depending on factors such as digesting enzymes, and leaf size. Onozuka R-10 (2%) in combination with Macerase (0.5%) was found best for protoplast isolation and mediocre for cell isolation among several enzyme combinations tested. Viability was 90% for protoplasts and 60% for cells. Pectolyase Y23 was found to be ineffective in our investigation. Small leaves, 4–10 mm in length, were a superior source for protoplast isolation than medium or big expanded leaves, 22–30 mm in length. The high yields of protoplasts could be obtained only when keeping the ratio of leaf biomass to volume of digesting enzyme solution under 20 mg ml-1. Purification of protoplasts on a sucrose gradient yielded about 107 protoplasts · gfw-1, however, the preparation was still contaminated by intact cells. Protoplasts were cultured under different growth regulators and physical conditions. Limited growth and division of protoplasts embedded in agarose drops were observed.Abbreviations BA 6-benzyladenine - IBA indolebutyric acid - FDA fluorescein diacetate - MES 2-M-morpholinoethane sulphonic acid - MS Murashige and Skoog - NAA -naphthaleneacetic acid - PVP polyvinylpyrrolidone  相似文献   

8.
玉米、小麦、水稻原生质体制备条件优化   总被引:3,自引:0,他引:3  
玉米Zea mays L.、小麦Triticum aestivum L.、水稻Oryza sativaL.是三大重要粮食作物,对其原生质体制备条件的优化具有重要意义.以玉米(综3)、小麦(中国春)、水稻(日本晴)10日龄幼苗为材料,研究了叶肉细胞原生质体分离过程中的酶浓度、酶解时间和离心力大小等因素对产量和活力的影响.结果表明:酶浓度和酶解时间对原生质体产量影响显著,随着酶解液浓度和酶解时间的提高,原生质体产量增加,但细胞碎片同时增多.水稻经真空处理后,原生质体产量大幅度提高.通过正交实验设计得出如下结果:玉米叶肉细胞原生质体分离的最佳条件为:纤维素酶1.5%,离析酶0.5%,50 r/min酶解7h,100×g离心2 min收集,原生质体产量为7×106/g FW;小麦叶肉细胞原生质体分离的最佳条件为:纤维素酶1.5%,离析酶0.5%,50 r/min酶解5h,100×g离心2 min收集,原生质体产量为6×106/g FW;水稻叶肉细胞原生质体分离的最佳条件为:纤维素酶2.0%,离析酶0.7%,50 r/min酶解7h,1 000×g离心2 min收集,得到的原生质体产量为6×106/g FW.通过二乙酸荧光素染色发现原生质体活力均在90%以上.用PEG-Ca2+介导法将含有绿色荧光蛋白的质粒转化入原生质体,转化率可达50% ~80%.  相似文献   

9.
The tropical agarophyte Gracilaria changii has been much researched and documented by the Algae Research Laboratory, University of Malaya, especially with regards to its potential as a seaweed bioreactor for valuable compounds. Protoplast regeneration of this seaweed was developed following the optimization of protoplast isolation protocol. Effect of the concentration and combination of isolating enzymes, incubation period, temperature, enzyme solution pH, tissue source on the protoplast yields were used to optimize the isolation protocol. The enzyme mixture with 4% w/v cellulase Onozuka R-10, 2% w/v macerozyme R-10 and 1 unit mL-1 agarase was found to produce the highest yield of protoplast at 28°C and 3 h incubation period. Thallus tips gave higher yields of protoplasts than middle segments. Freshly isolated G. changii protoplasts were cultured in MES medium. Regeneration of protoplast cell walls after 24 h was confirmed by calcofluor white M2R staining under UV fluorescence microscopy. The protoplasts with regenerated cell walls then underwent a series of cell division to produce callus-like cell masses in MES medium. Following this, juvenile plants of G. changii were obtained.  相似文献   

10.
Viable protoplasts of Taxus yunnanensis were isolated from friable, light yellow callus. Protoplast yield was dependent on callus age, with a maximum from 20-day-old callus. Protoplasts were induced to undergo sustained divisions and to form cell colonies when cultured in medium consisting of B5 salts, KM vitamin and organic components, 0.45 M fructose, 3.0 mg l-1 2,4-dichlorophenoxyacetic acid and 0.1 mg l-1 kinetin. The planting density was 2.5–3.0×105 protoplasts per ml of culture medium. Cell-free extract from callus enhanced protoplast division and the highest plating efficiency was about 7%. Protoplast-derived colonies showed significant variations in both growth and paclitaxel content. A negative correlation existed between paclitaxel accumulation in colonies and their growth to some extent (r = −0.4485). Among 70 colonies isolated from the heterogeneous protoplast cultures, colony TY-7 accumulated the highest paclitaxel content. Paclitaxel accumulation in colony TY-7 was not great enough to produce paclitaxel for commercial purposes, however, success in inducing colony formation from T. yunnanensis protoplasts provides an opportunity to obtain cell lines with high paclitaxel productivity from mutagenized protoplast cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary A procedure for protoplast isolation and plant regeneration of St. John's wort has been developed to utilize cell-to-cell variability for optimum production of valuable medicinal compounds. Calluses, induced from hypocotyl segments of St. John's wort seedlings, were used for protoplast isolation, induction of sustained cell division, and ultimately, plant regeneration. Callus-isolated protoplasts at a density of 2.0×105 per ml were embedded in 0.6% Na-alginate blocks and cultured in a medium containing modified Murashige and Skoog (MS) salts, 2.5 μM 6-benzylaminopurine (BA), 5.0 μMα-naphthaleneacetic acid (NAA), and 0.5 moll−1 glucose. Protoplast-derived colonies formed compact calluses when transferred onto 0.35% gellan gum-solidified MS medium supplemented with 2.5 μM BA and 2.5 μM NAA. Shoot organogenesis from the protoplast-derived callus was induced on MS medium supplemented with 5 μM thidiazuron. Complete plantlets were obtained from the regenerated shoots on MS basal medium. A greater than 3-fold variation of antioxidant activity was observed among the protoplast-derived plantets and chemically distinct germplasm lines were selected on the basis of phytochemical profiles. The protoplast to plant regeneration protocol developed in this study provides the foundation for development of novel genotypes with potential expansion of the genetic diversity through somatic hybridization, and organelle transplantation.  相似文献   

12.
We describe here an efficient and reproducible protocol for isolation and culture of protoplasts from Ulmus minor. Different sources of donor tissues were tested for protoplast isolation: callus and juvenile leaves from in vitro and greenhouse plants. Several combinations and concentrations of hydrolytic enzymes were used. Comparative tests between Cellulase Onozuka R10 and Cellulase Onozuka RS were made and the last one proved to be more efficient. Both the pectinases used, Macerozyme Onozuka R10 and Pectinase (Sigma®), were efficient in protoplast isolation and there was no need for a more active pectinase. In vitro leaves proved to be the best source for protoplast isolation and produced an average of 3.96 × 107 protoplasts per gram of fresh weigh. Elm mesophyll protoplasts were cultured using the advantageous method of agarose droplets and a modification of the Kao and Michayluk culture medium, using two plating densities (1 × 105 and 2 × 105 protoplasts ml?1). Protoplast division and evolution into colonies and microcalli was promoted in the agarose droplets plated at 2 × 105 protoplasts ml?1. Ten weeks after protoplast culture initiation a plating efficiency of 2.7% was attained and the bigger microcalli, with at least 0.5 mm diameter, were transferred to a solid medium previously used for the production of embryogenic callus.  相似文献   

13.
Conditions have been developed that induce maize (Zea mays L.) protoplasts to re-synthesize cell walls and to initiate cell divisions. Two types of embryogenic maize callus were used as a source of protoplasts: a heterogeneous callus (Type I) derived from immature embryos after three weeks in culture, and a friable, rapidly growing callus (Type II) selected from portions of the Type I callus. Many variables in the growth conditions of the donor tissue (type of medium, transfer schedule, age of callus), protoplast isolation solutions (pH, osmolarity, type and concentration of cell wall hydrolyzing enzymes, addition of polyamines) and conditions (amount of time in enzyme, amount of tissue per volume of enzyme incubation medium, agitation, preplasmolysis of source tissue, type of callus), and purification procedures (filtration and-or flotation), were found to affect both yield and viability of protoplasts (based upon fluorescein-diacetate staining). Our isolation procedure yielded high numbers of viable, uninucleated maize callus protoplasts which were densely cytoplasmic and varied in size from 20 to 50 m in diameter. Protoplasts plated in solid medium formed walls and divided several times. Of several gelling agents tested for protoplast propagation, only agarose resulted in protoplasts capable of sustained divisions leading to the formation of microcalli. Plating efficiency was established over a wide range of protoplast densities (103–107 protoplasts/ml). Highest plating efficiency (25%) was obtained at 1·106 protoplasts/ml). The resulting microcalli grew to be dense clusters of about 0.1–0.5 mm in diameter and then stopped growing. Nurse cultures of maize and carrot (Daucus carota L.), were used to establish that individual protoplasts (not contaminating cells or cell clusters) formed walls and divided. Nurse cultures also increased the efficiency of microcallus formation from protoplasts.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) salts - MS 1D Murashige and Skoog salts with 1 mg/l 2,4-D - MS 2D Murashige and Skoog salts with 2 mg/l 2,4-D - N6 medium of Chu et al. (1975) - NN67-mod medium of Nitsch and Nitsch (1967) as modified in the present paper - FDA fluorescein diacetate - LMP low melting point  相似文献   

14.
Protoplasts of 6 alloplasmic and 2 euplasmic sunflower inbred lines were isolated from dark grown seedling hypocotyls with a density of 2×104 protoplasts/ml. The protoplast suspension was mixed with a solution of 0.5% agarose (sigma – type 1), then pipetted in droplets of about 1000 protoplasts. Droplets were surrounded by two different liquid media. After 30 days droplets from both media were transferred to solid differentiation medium. Protoplast division, microcolony frequency and the number of calluses produced were strongly dependent on medium composition and genotype. The number of calluses per 1000 protoplasts plated range from 0.3 to 5.0 according to the genotype and the method used. The alloplasmic line RHA274-PEF1, was the best responding genotype for calluses produced in both media used. In all cases, the percentage of calluses for alloplasmic lines were significantly higher when compared with the nucleus donor genotype. H. petiolaris fallax cytoplasm increased both the number of calluses produced and the percentage of microcolonies. The complex interaction among genotypes tested indicates that protoplast culture responses are affected independently by nuclear-cytoplasm interactions. Some nucleus-cytoplasm combinations can improve the protoplast culture responses in sunflower. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
High yields of protoplasts have been obtained from vegetative thalli of three species ofEnteromorpha by enzymatic degradation of the cell wall. Several commercial and crude enzymes prepared from the digestive system and hepatopancrease of abalone and top-shell were tested at different concentrations and combinations to evaluate the yield. Commercial enzymes in combination with either abalone or top-shell crude enzymes, consistently produced a high yield of protoplasts from all three species. High regeneration rate (85–95%) occurred in the protoplasts cultured at a density greater than 1.72 × 103 cells cm−2 at 20 and 25°C. Light intensities tested in the present study did not affect protoplast wall formation and regeneration. Protoplasts, after regenerating the cell wall, followed different types of developmental patterns under identical culture conditions. In one type some cells underwent repeated cell divisions and formed a round and oval shaped hollow thallus with a single layer of cells. In the second type many cells underwent one or two cell divisions (occasionally no division) and soon matured and discharged many motile spores, which on germination grew into normal plantlets. In the third type some cells divided irregularly to form a mass of callus-like cells (exceptE. prolifera). Culture medium supplemented with either mannitol, sorbitol, dextrose, saccharose or NaCl at higher concentrations (> 0.4 M) inhibited cell division and further differentiation in all species. author for correspondence  相似文献   

16.
三倍体‘银中杨’叶肉原生质体制备的优化   总被引:1,自引:0,他引:1  
以三倍体杨树品种‘银中杨’(Populus alba×P.berolinensis Yinzhong)无菌苗叶片为材料,对其原生质体分离及纯化条件进行研究,为进一步通过细胞融合、基因工程等进行品种改良探索新的途径。结果表明:酶的种类及浓度、渗透压、酶解时间对‘银中杨’叶肉原生质体分离效果有显著影响,适宜的分离条件为CPW+3% Cellulase RS+0.5% Macerozyme R-10+0.3% Pectinse Y-23+0.6 mol/L甘露醇+0.6 g/L MES+1 g/L BAS,酶解时间为8 h,原生质体产量和活力分别为2.13×107个/g和80.18%;‘银中杨’叶肉原生质体纯化最佳方法为上浮法蔗糖等密度离心,且蔗糖浓度为40%时原生质体产量最高(1.06×107个/g),可满足进一步的原生质体培养等技术的要求。  相似文献   

17.
Isolated protoplasts of Ulva pertusa and Enteromorpha prolifera were electrically fused. Treatment of protoplasts in 1% protease for 15–20 min prior to fusion enhanced fusion ability. Protoplasts from each fusion partner were mixed together in 1:1 ratio in low conductivity electrofusion solution at a density of 1 × 105 cells ml−1 before subjecting them to electrofusion. The protoplasts were aligned in AC field (1MHz, 25 V for 10–15 s) and subsequently fused by a high intensity single DC pulse of 250 V for 25 μs duration. Fusion buffer supplemented with 1 mM calcium and 1 mM magnesium yielded optimum fusion frequencies (about 18–24%). Entrapment of fusion treated cells inside agarose/agar plate facilitated marking and regeneration of fusion products. The regeneration patterns of fused protoplasts were similar to normal (unfused) protoplast development. Most of the regenerated plants from fusion products had a thallus similar to either U. pertusa type or E. prolifera type. Although some of the plants of the former were morphologically similar to U. pertusa, but most had a higher growth rate (1.9 to 1.5 times) than U. pertusa. Furthermore the thallus of some plants had a characteristic irregular and dentate margin, which was never observed in the parental type.  相似文献   

18.
A method for isolation and shoot regeneration from electrofused protoplasts of L. angustifolius and L. subcarnosus was developed. Viable protoplasts were isolated from leaves of in-vitro grown seedlings at an average yield of 6 × 105 protoplasts g−1 fresh weight. Liquid and agarose solidified B5 media were used for protoplast culture. In the liquid-culture system, all tested media, VKM, P1 and KM8p, were applicable for inducing cell division (84% of all tested petri dishes at four weeks) and colony formation. Media containing additional carbohydrates were suitable to produce compact calli with green and brown pigmentations in different combinations. Analysis of callus with molecular markers allowed to identify six somatic hybrids. However, none of the parental-protoplast derived cell colonies could develop shoots. This is the first report on protoplast fusion of L. angustifolius and L. subcarnosus with subsequent shoot regeneration.  相似文献   

19.
Experiments were performed with the mycorrhizal fungus Suillus granulatus to define the parameters for production and regeneration of protoplasts. Protoplasts were released at frequencies between 1 and 3×107/ml from mycelium 3 to 7 days old. The best osmotic stabilizer for protoplast release was MgSO4 (0.7 m). To optimize protoplast release and regeneration an enzyme (Novozym 234) concentration 1.7 mg/ml was chosen, with a digestion time of 1 to 2 h. Regenerated colonies formed mycorrhizae within 60 days after inoculation in Pinus caribaea var. hondurensis seedlings.  相似文献   

20.
为探索“红颜”草莓悬浮细胞系原生质体提取的最优条件,并建立“红颜”草莓原生质体瞬时转化体系,以“红颜”草莓悬浮细胞为材料,对酶液组成、酶解温度、酶解方式进行研究。用PEG介导的瞬时转化法将标记基因GFP转化到“红颜”草莓原生质体中。结果显示:以“红颜”草莓悬浮细胞系作为分离材料,酶液组合为CPW中含有0.5%PVP+0.1%MES+1%纤维素酶+0.5%离析酶+0.01%半纤维素酶+0.9 mol/L甘露醇,在低速(50 r/min)恒温(31 ℃)震摇下进行酶解反应,酶解10 h时,达到“红颜”草莓原生质体最佳分离效果,每克鲜重产量可得原生质体6×108 个,活力值可达93.0%。PEG介导法成功将含有绿色荧光蛋白(green fluorescent protein, GFP)的植物表达载体转化“红颜”草莓悬浮细胞原生质体,转化效率达44%。通过实验筛选得到“红颜”草莓悬浮细胞原生质体的最佳制备条件,建立“红颜”草莓悬浮细胞原生质体的瞬时转化体系,为进一步开展“红颜”草莓功能基因及合成生物学研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号