首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The events regulating coat complex II (COPII) vesicle formation involved in the export of cargo from the endoplasmic reticulum (ER) are unknown. COPII recruitment to membranes is initiated by the activation of the small GTPase Sar1. We have utilized purified COPII components in both membrane recruitment and cargo export assays to analyze the possible role of kinase regulation in ER export. We now demonstrate that Sar1 recruitment to membranes requires ATP. We find that the serine/threonine kinase inhibitor H89 abolishes membrane recruitment of Sar1, thereby preventing COPII polymerization by interfering with the recruitment of the cytosolic Sec23/24 COPII coat complex. Inhibition of COPII recruitment prevents export of cargo from the ER. These results demonstrate that ER export and initiation of COPII vesicle formation in mammalian cells is under kinase regulation.  相似文献   

2.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

3.
The Sar1 GTPase is an essential component of COPII vesicle coats involved in export of cargo from the ER. We report the 1.7-A structure of Sar1 and find that consistent with the sequence divergence of Sar1 from Arf family GTPases, Sar1 is structurally distinct. In particular, we show that the Sar1 NH2 terminus contains two regions: an NH2-terminal extension containing an evolutionary conserved hydrophobic motif that facilitates membrane recruitment and activation by the mammalian Sec12 guanine nucleotide exchange factor, and an alpha1' amphipathic helix that contributes to interaction with the Sec23/24 complex that is responsible for cargo selection during ER export. We propose that the hydrophobic Sar1 NH2-terminal activation/recruitment motif, in conjunction with the alpha1' helix, mediates the initial steps in COPII coat assembly for export from the ER.  相似文献   

4.
COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.  相似文献   

5.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

6.
The coat protein complex II (COPII) generates transport vesicles that mediate protein export from the endoplasmic reticulum (ER). The first step of COPII vesicle formation involves conversion of Sar1p-GDP to Sar1p-GTP by guanine-nucleotide-exchange factor (GEF) Sec12p. In Saccharomyces cerevisiae, Sed4p is a structural homolog of Sec12p, but no GEF activity toward Sar1p has been found. Although the role of Sed4p in COPII vesicle formation is implied by the genetic interaction with SAR1, the molecular basis by which Sed4p contributes to this process is unclear. This study showed that the cytoplasmic domain of Sed4p preferentially binds the nucleotide-free form of Sar1p and that Sed4p binding stimulates both the intrinsic and Sec23p GTPase-activating protein (GAP)-accelerated GTPase activity of Sar1p. This stimulation of Sec23p GAP activity by Sed4p leads to accelerated dissociation of coat proteins from membranes. However, Sed4p binding to Sar1p occurs only when cargo is not associated with Sar1p. On the basis of these findings, Sed4p appears to accelerate the dissociation of the Sec23/24p coat from the membrane, but the effect is limited to Sar1p molecules that do not capture cargo protein. We speculate that this restricted coat disassembly may contribute to the concentration of specific cargo molecules into the COPII vesicles.  相似文献   

7.
In eukaryotic membrane trafficking, emergent protein folding pathways dictated by the proteostasis network (the 'PN') in each cell type are linked to the coat protein complex II (COPII) system that initiates transport through the exocytic pathway. These coupled pathways direct the transit of protein cargo from the endoplasmic reticulum (ER) to diverse subcellular and extracellular destinations. Understanding how the COPII system selectively manages the trafficking of distinct folded states of nascent cargo (comprising one-third of the proteins synthesized by the eukaryotic genome) in close cooperation with the PN remains a formidable challenge to the field. Whereas the PN may contain a thousand component, the minimal COPII coat components that drive all vesicle budding from the ER include Sar1 (a GTPase), Sec12 (a guanine nucleotide exchange factor), Sec23-Sec24 complexes (protein cargo selectors) and the Sec13-Sec31 complex (that functions as a protein cargo collector and as a polymeric lattice generator to promote vesicle budding). A wealth of data suggests a hierarchical role of the PN and COPII components in coupling protein folding with recruitment and assembly of vesicle coats on the ER. In this minireview, we focus on insights recently gained from the study of inherited human disease states of the COPII machinery. We explore the relevance of the COPII system to human biology in the context of its inherent link with the remarkably flexible folding capacity of the PN in each cell type and in response to the environment. The pharmacological manipulation of this coupled system has important therapeutic implications for restoration of function in human disease.  相似文献   

8.
COPII-coated vesicles, first identified in yeast and later characterized in mammalian cells, mediate protein export from the endoplasmic reticulum (ER) to the Golgi apparatus within the secretory pathway. In these organisms, the mechanism of vesicle formation is well understood, but the process of soluble cargo sorting has yet to be resolved. In plants, functional complements of the COPII-dependent protein traffic machinery were identified almost a decade ago, but the selectivity of the ER export process has been subject to considerable debate. To study the selectivity of COPII-dependent protein traffic in plants, we have developed an in vivo assay in which COPII vesicle transport is disrupted at two distinct steps in the pathway. First, overexpression of the Sar1p-specific guanosine nucleotide exchange factor Sec12p was shown to result in the titration of the GTPase Sar1p, which is essential for COPII-coated vesicle formation. A second method to disrupt COPII transport at a later step in the pathway was based on coexpression of a dominant negative mutant of Sar1p (H74L), which is thought to interfere with the uncoating and subsequent membrane fusion of the vesicles because of the lack of GTPase activity. A quantitative assay to measure ER export under these conditions was achieved using the natural secretory protein barley alpha-amylase and a modified version carrying an ER retention motif. Most importantly, the manipulation of COPII transport in vivo using either of the two approaches allowed us to demonstrate that export of the ER resident protein calreticulin or the bulk flow marker phosphinothricin acetyl transferase is COPII dependent and occurs at a much higher rate than estimated previously. We also show that the instability of these proteins in post-ER compartments prevents the detection of the true rate of bulk flow using a standard secretion assay. The differences between the data on COPII transport obtained from these in vivo experiments and in vitro experiments conducted previously using yeast components are discussed.  相似文献   

9.
The COPII coat complex mediates the formation of transport carriers at specialized sites of the endoplasmic reticulum (ERES). It consists of the Sar1p GTPase and the Sec23/24p and the Sec13/31p subcomplexes . Both stimulate the GTPase activity of Sar1p , which itself triggers coat disassembly. This built-in GAP activity makes the COPII complex in principle unstable and raises the question of how sufficient stability required for cargo capture and carrier formation is achieved. To address this, we analyzed COPII turnover at single ERES in living cells. The half times for Sar1p, Sec23p, and Sec24p turnover are 1.1, 3.7, and 3.9 s, respectively. Decreasing the amount of transport-competent cargo in the endoplasmic reticulum accelerates turnover of the Sec23/24p and slows down that of Sar1p. A mathematical model of COPII membrane turnover that reproduces the experimental in vivo FRAP kinetics and is consistent with existing in vitro data predicts that Sec23/24p remains membrane associated even after GTP hydrolysis by Sar1p for a duration that is strongly increased by the presence of cargo. We conclude that secretory cargo retains the COPII complex on membranes, after Sar1p release has occurred, and prevents premature disassembly of COPII during cargo sorting and transport carrier formation.  相似文献   

10.
A structural view of the COPII vesicle coat   总被引:6,自引:0,他引:6  
The COPII vesicle coat coordinates the budding of transport vesicles from the endoplasmic reticulum in the initial step of the secretory pathway. The coat orchestrates a sequence of events including self-assembly on the membrane, cargo and SNARE molecule selection, and deformation of the membrane into a bud to drive vesicle fission. Recent molecular-level studies have helped to explain how the three components of yeast COPII - Sar1 GTPase, the Sec23/24 subcomplex and the Sec13/31 subcomplex - combine to organize this complex process.  相似文献   

11.
Coat protein II (COPII)-coated vesicles transport proteins and lipids from the endoplasmic reticulum to the Golgi. Crucial for the initiation of COPII coat assembly is Sec12, a guanine nucleotide exchange factor responsible for activating the small G protein Sar1. Once activated, Sar1/GTP binds to endoplasmic reticulum membranes and recruits COPII coat components (Sec23/24 and Sec13/31). Here, we report the 1.36 Å resolution crystal structure of the catalytically active, 38-kDa cytoplasmic portion of Saccharomyces cerevisiae Sec12. Sec12 adopts a β propeller fold. Conserved residues cluster around a loop we term the “K loop,” which extends from the N-terminal propeller blade. Structure-guided site-directed mutagenesis, in conjunction with in vitro and in vivo functional studies, reveals that this region of Sec12 is catalytically essential, presumably because it makes direct contact with Sar1. Strikingly, the crystal structure also reveals that a single potassium ion stabilizes the K loop; bound potassium is, moreover, essential for optimum guanine nucleotide exchange activity in vitro. Thus, our results reveal a novel role for a potassium-stabilized loop in catalyzing guanine nucleotide exchange.  相似文献   

12.
Cargo selection and export from the endoplasmic reticulum is mediated by the COPII coat machinery that includes the small GTPase Sar1 and the Sec23/24 and Sec13/31 complexes. We have analyzed the sequential events regulated by purified Sar1 and COPII coat complexes during synchronized export of cargo from the ER in vitro. We find that activation of Sar1 alone, in the absence of other cytosolic components, leads to the formation of ER-derived tubular domains that resemble ER transitional elements that initiate cargo selection. These Sar1-generated tubular domains were shown to be transient, functional intermediates in ER to Golgi transport in vitro. By following cargo export in live cells, we show that ER export in vivo is also characterized by the formation of dynamic tubular structures. Our results demonstrate an unanticipated and novel role for Sar1 in linking cargo selection with ER morphogenesis through the generation of transitional tubular ER export sites.  相似文献   

13.
COPII-coated buds are formed at endoplasmic reticulum exit sites (ERES) to mediate ER-to-Golgi transport. Sec16 is an essential factor in ERES formation, as well as in COPII-mediated traffic in vivo. Sec16 interacts with multiple COPII proteins, although the functional significance of these interactions remains unknown. Here we present evidence that full-length Sec16 plays an important role in regulating Sar1 GTPase activity at the late steps of COPII vesicle formation. We show that Sec16 interacts with Sec23 and Sar1 through its C-terminal conserved region and hinders the ability of Sec31 to stimulate Sec23 GAP activity toward Sar1. We also find that purified Sec16 alone can self-assemble into homo-oligomeric complexes on a planar lipid membrane. These features ensure prolonged COPII coat association within a preformed Sec16 cluster, which may lead to the formation of ERES. Our results indicate a mechanistic relationship between COPII coat assembly and ERES formation.  相似文献   

14.
The generation of COPII vesicles from synthetic liposome membranes requires the minimum coat components Sar1p, Sec23/24p, Sec13/31p, and a nonhydrolyzable GTP analog such as GMP-PNP. However, in the presence of GTP and the full complement of coat subunits, nucleotide hydrolysis by Sar1p renders the coat insufficiently stable to sustain vesicle budding. In order to recapitulate a more authentic, GTP-dependent budding event, we introduced the Sar1p nucleotide exchange catalyst, Sec12p, and evaluated the dynamics of coat assembly and disassembly by light scattering and tryptophan fluorescence measurements. The catalytic, cytoplasmic domain of Sec12p (Sec12DeltaCp) activated Sar1p with a turnover 10-fold higher than the GAP activity of Sec23p stimulated by the full coat. COPII assembly was stabilized on liposomes incubated with Sec12DeltaCp and GTP. Numerous COPII budding profiles were visualized on membranes, whereas a parallel reaction conducted in the absence of Sec12DeltaCp produced no such profiles. We suggest that Sec12p participates actively in the growth of COPII vesicles by charging new Sar1p-GTP molecules that insert at the boundary between a bud and the surrounding endoplasmic reticulum membrane.  相似文献   

15.
16.
In contrast with animals, plant cells contain multiple mobile Golgi stacks distributed over the entire cytoplasm. However, the distribution and dynamics of protein export sites on the plant endoplasmic reticulum (ER) surface have yet to be characterized. A widely accepted model for ER-to-Golgi transport is based on the sequential action of COPII and COPI coat complexes. The COPII complex assembles by the ordered recruitment of cytosolic components on the ER membrane. Here, we have visualized two early components of the COPII machinery, the small GTPase Sar1p and its GTP exchanging factor Sec12p in live tobacco (Nicotiana tabacum) leaf epidermal cells. By in vivo confocal laser scanning microscopy and fluorescence recovery after photobleaching experiments, we show that Sar1p cycles on mobile punctate structures that track with the Golgi bodies in close proximity but contain regions that are physically separated from the Golgi bodies. By contrast, Sec12p is uniformly distributed along the ER network and does not accumulate in these structures, consistent with the fact that Sec12p does not become part of a COPII vesicle. We propose that punctate accumulation of Sar1p represents ER export sites (ERES). The sites may represent a combination of Sar1p-coated ER membranes, nascent COPII membranes, and COPII vectors in transit, which have yet to lose their coats. ERES can be induced by overproducing Golgi membrane proteins but not soluble bulk-flow cargos. Few punctate Sar1p loci were observed that are independent of Golgi bodies, and these may be nascent ERES. The vast majority of ERES form secretory units that move along the surface of the ER together with the Golgi bodies, but movement does not influence the rate of cargo transport between these two organelles. Moreover, we could demonstrate using the drug brefeldin A that formation of ERES is strictly dependent on a functional retrograde transport route from the Golgi apparatus.  相似文献   

17.
Rab11a small G protein (Rab11p) is implicated in vesicle trafficking, especially vesicle recycling. We have previously isolated a downstream effector of Rab11p, named rabphilin-11. We found here that rabphilin-11 directly bound the mammalian counterpart of yeast Sec13 protein (mSec13p) in cell-free and intact cell systems. Yeast Sec13p is involved as a component of coat proteins II in the Sar1p-induced vesicle formation from the endoplasmic reticulum, but the precise role of mSec13p is unknown. The interaction of rabphilin-11 with mSec13p was enhanced by GTP-Rab11p. Rabphilin-11 localized on the vesicles in perinuclear regions and along microtubules oriented toward the plasma membrane, whereas mSec13p partly colocalized with rabphilin-11 in the perinuclear regions, most presumably the Golgi complex. Disruption of the rabphilin-11-mSec13p interaction by overexpression of the mSec13p-binding region of rabphilin-11 impaired vesicle trafficking. These results indicate that the rabphilin-11-mSec13p interaction is implicated in vesicle trafficking.  相似文献   

18.
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.  相似文献   

19.
The small GTPase Sar1p controls the assembly of the cytosolic COPII coat that mediates export from the endoplasmic reticulum (ER). Here we demonstrate that phospholipase D (PLD) activation is required to support COPII-mediated ER export. PLD activity by itself does not lead to the recruitment of COPII to the membranes or ER export. However, PLD activity is required to support Sar1p-dependent membrane tubulation, the subsequent Sar1p-dependent recruitment of Sec23/24 and Sec13/31 COPII complexes to ER export sites and ER export. Sar1p recruitment to the membrane is PLD independent, yet activation of Sar1p is required to stimulate PLD activity on ER membranes, thus PLD is temporally regulated to support ER export. Regulated modification of membrane lipid composition is required to support the cooperative interactions that enable selective transport, as we demonstrate here for the mammalian COPII coat.  相似文献   

20.
Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screen all known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identifies the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号