首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-3 (IL-3) is a lymphokine which stimulates the proliferation of normal and transformed multilineage hematopoietic cells. Recently we reported that bryostatin 1, a macrocyclic lactone and potent activator of protein kinase C, could stimulate normal multipotential hematopoietic progenitor cells in vitro in the absence of added polypeptide growth factors. We have now used the murine IL-3-dependent cell line FDC-P1, derived from normal murine marrow cells, to examine the early biochemical events associated with stimulation of hematopoietic cells. We find that both IL-3 and bryostatin 1 are mitogenic and stimulate the growth of FDC-P1 cells. Cells grown for extended periods in the presence of bryostatin 1 (1 nM) alone retain IL-3 responsiveness, indicating that bryostatin 1 does not induce an IL-3-independent state. Protein phosphorylation studies in cells treated with either IL-3 or bryostatin 1 indicate that both stimulators can mediate the rapid (within 5 min) serine-specific phosphorylation of several nuclear envelope polypeptides, including lamin B. Both IL-3- and bryostatin 1-mediated nuclear envelope phosphorylation is dose-dependent, occurring at concentrations which are mitogenic to FDC-P1 cells. The extent of nuclear envelope phosphorylation mediated by IL-3 and bryostatin 1 correlates with the mitogenic response. Furthermore, both mitogens mediate the rapid immunologic translocation of protein kinase C to the nuclear envelope where phosphorylation occurs. These data indicate that the early mitogenic signal(s) generated by IL-3 and bryostatin 1 may converge at the level of the nuclear envelope, perhaps through a protein kinase C-like activity which mediates phosphorylation of specific nuclear envelope polypeptides such as lamin B.  相似文献   

2.
The promyelocytic leukemia (HL60) cell line differentiates into monocyte-like cells after treatment with phorbol dibutyrate (PBt2). In contrast, bryostatin 1 (bryo), a structurally distinct protein kinase C (PKC) activator, does not induce differentiation and blocks the cytostatic effect of PBt2. The divergent responses to these agents correlate with activation of a PKC-like activity at the nucleus in response to bryo but not PBt2 (Fields, A. P., Pettit, G. R., and May, W.S. (1988) J. Biol. Chem. 263, 8253-8260). In the present study, this nuclear PKC-like activity (termed PKCn) was isolated from HL60 cells and shown to phosphorylate its known nuclear substrate, lamin B. PKCn-mediated phosphorylation of nuclear envelope-associated lamin B in vitro is calcium-dependent and is stimulated by bryo and 1,2-dioctanoylglycerol (DiC8), but not PBt2. In contrast, PKCn-mediated phosphorylation of histone IIIS is stimulated equally by all three activators. PKCn mediates calcium- and phosphatidylserine-dependent phosphorylation of both histone IIIS and partially purified lamin B. PKCn activity can be inhibited by an anti-PKC monoclonal antibody which specifically inhibits PKC. Isotype-specific PKC antibodies identify PKCn as beta II-PKC. Immunoblot analysis indicates that HL60 cells express both alpha- and beta II-PKC but no beta I- or gamma-PKC. Treatment of intact cells with bryo for 30 min leads to complete translocation of both alpha- and beta II-PKC from the cytosol to the membrane fractions. Approximately 8-10% of the total beta II-PKC (and less than 0.3% of the alpha-PKC) is found associated with the nuclear membrane of bryo-treated cells. In contrast, PBt2 treatment leads to complete translocation of alpha-PKC, but only partial translocation of beta II-PKC to the plasma membrane fraction. Neither PKC isotype is found associated with the nuclear membrane of PBt2-treated cells. These data demonstrate that alpha- and beta II-PKC differ with respect to activator responsiveness, intracellular distribution, and substrate specificity and indicate that their selective activation at distinct intracellular sites, including the nucleus, can have a dramatic effect on resulting cellular responses.  相似文献   

3.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

4.
Protein phosphorylation by activation of protein kinase C was examined using quiescent cultures of the mouse epidermal keratinocyte line BALB/MK-2. Treatment with phorbol ester caused rapid phosphorylation of five proteins with molecular weights of 80,000, 70,000, 40,000, 34,000, 28,000. Of these proteins, the 70,000 molecular weight one (p70) was studied further. Its position on two-dimensional gel suggested that p70 is nuclear envelope lamin B. This possibility was confirmed by the co-migration of p70 with the lamin fraction of mouse liver and its immunoprecipitation with antinuclear lamina antibody. The lamin B fraction consists of lamin B1 and lamin B2. Evidence that p70 is lamin B2 was obtained by peptide mapping and amino acid sequencing. Lamin B2 is the only lamin that shows a substantial increase in phosphorylation on treatment of BALB/MK-2 cells with phorbol ester.  相似文献   

5.
《The Journal of cell biology》1993,120(6):1293-1304
The nuclear lamina is a karyoskeletal structure at the nucleoplasmic surface of the inner nuclear membrane. Its assembly state is regulated by phosphorylation of the intermediate filament type lamin proteins. Strong evidence has been obtained for a causal link between phosphorylation of lamins by the p34cdc2 protein kinase and disassembly of the nuclear lamina during mitosis. In contrast, no information is currently available on the role of lamin phosphorylation during interphase of the cell cycle. Here, we have identified four protein kinase C phosphorylation sites in purified chicken lamin B2 as serines 400, 404, 410, and 411. In vivo, the tryptic peptide containing serines 400 and 404 is phosphorylated throughout interphase, whereas serines 410 and 411 become phosphorylated specifically in response to activation of protein kinase C by phorbol ester. Prompted by the close proximity of serines 410/411 to the nuclear localization signal of lamin B2, we have studied the influence of phosphorylation of these residues on nuclear transport. Using an in vitro assay, we show that phosphorylation of lamin B2 by protein kinase C strongly inhibits transport to the nucleus. Moreover, phorbol ester treatment of intact cells leads to a substantial reduction of the rate of nuclear import of newly synthesized lamin B2 in vivo. These findings have implications for the dynamic structure of the nuclear lamina, and they suggest that the modulation of nuclear transport rates by cytoplasmic phosphorylation may represent a general mechanism for regulating nuclear activities.  相似文献   

6.
7.
Lamin B1, a major component of the nuclear lamina, anchors the nucleus to the cytoskeletal cage, and controls nuclear orientation, chromosome positioning and, alongside several enzymes, fundamental nuclear functions. Exposing polyomavirus-transformed rat pyF111 fibroblasts and human cervical carcinoma (HCC) C4-I cells for 30 min to photoexcited perylenequinone calphostin C, i.e. Cal C(phiE), an established reactive oxygen species (ROS)-generator and protein kinase C (PKC) inhibitor, caused the cells to selectively oxidize and then totally destroy their nuclear lamin B1 by only 60 min after starting the treatment, i.e. when apoptotic caspases' activities had not yet increased. However, while the oxidized lamin B1 was being destroyed, lamins A/C, the lamin A-associated nuclear envelope protein emerin, and the nucleoplasmic protein cyclin E were neither oxidized nor destroyed. The oxidized lamin B was ubiquitinated and demolished in the proteasome probably by an enhanced peptidyl-glutaminase-like activity. Hence, the Cal C(phiE)-induced rapid and selective lamin B1 oxidation and proteasomal destruction ahead of the activation of apoptotic caspases was by itself a most severe molecular lesion impairing vital nuclear functions. Conversely, Cal C directly added to the cells kept in the dark damaged neither nuclear lamin B1 nor cell viability. Thus, our findings reveal a novel cell-damaging mechanism of a photodynamic tumor therapeutic agent.  相似文献   

8.
While the p34cdc2 kinase is considered to be a critical regulator of mitosis, its function has not yet been directly linked to one of the key events during the onset of mitosis: nuclear envelope breakdown. Here we show that a major structural protein of the nuclear envelope, lamin B2, is phosphorylated by p34cdc2. Results from two-dimensional phosphopeptide mapping experiments demonstrate that the p34cdc2-specific phosphopeptides represent both mitotic and interphase specific phosphorylations of lamin B2 and include the major interphase phosphorylation site. In mitotic cells we detected two distinct forms of lamin B2 which differ in electrophoretic mobility and in degree of phosphorylation. The phosphorylation pattern of lamin B2 generated in vitro by p34cdc2 was more closely related to the less phosphorylated mitotic lamin B2, suggesting that another kinase(s) in addition to p34cdc2 is involved in generating the mitotic phosphorylation pattern. In addition, we show that treatment of interphase cells with okadaic acid, a potent phosphatase inhibitor, leads to the acquisition of mitosis-specific phosphopeptides and can reversibly increase the detergent-solubility of lamin B2. However, the M-phase-like phosphorylation of lamin B2 in itself is not sufficient to induce its disassembly from the nuclear lamina suggesting that an additional event(s) besides phosphorylation is required.  相似文献   

9.
G Simos  S D Georgatos 《The EMBO journal》1992,11(11):4027-4036
p58, also referred to as the lamin B receptor, is an intrinsic protein of the inner nuclear membrane that binds in vitro to lamin B. Previous studies have demonstrated that p58 is phosphorylated in vivo and removal of its phosphate moieties affects lamin B binding. Using affinity-purified antipeptide antibodies, we have now immunoisolated p58 from bird erythrocyte lysates under isotonic, non-denaturing conditions. Analysis of the immunopurified material shows that five distinct proteins are tightly and specifically associated with p58. Two of these polypeptides can be identified as nuclear lamins A and B. The immunoisolate also contains a kinase activity that phosphorylates p58 in vivo and in vitro, exclusively at serine residues, as indicated by phosphoamino acid analysis and two-dimensional phosphopeptide mapping. Cell fractionation experiments and in vitro phosphorylation assays demonstrate that the p58 kinase resides in the nuclear envelope and is distinct from protein kinase A and cdc2 kinase, for both of which p58 is an in vitro substrate. These data suggest that p58 is interacting in vivo with a p58 kinase and the nuclear lamins.  相似文献   

10.
In this report, we demonstrate that HL-60 nuclei isolated in calcium but not EGTA containing buffers specifically bind PE and express approximately 37,000 receptor sites/nucleus. Nuclear phorbol ester binding is lost by isolation in the absence of calcium, but can be repleted by the addition of partially purified protein kinase C and calcium. When HL-60 cells are treated with bryostatin 1, a compound which activates protein kinase C in a similar fashion to phorbol esters but does not induce differentiation of HL-60 cells, and nuclei are isolated in the presence of EGTA, these nuclei continue to bind phorbol esters. These experiments suggest that HL-60 nuclei bind PE in vitro, and that compounds that activate protein kinase C may increase nuclear binding of PE in situ.  相似文献   

11.
The human leukemic cell line (HL-60) can be induced to differentiate in vitro to granulocytic form with retinoic acid (RA), or to monocytic/macrophage form with phorbol ester (TPA). The granulocytic form acquires nuclear lobulation, nuclear envelope-limited chromatin sheets (ELCS), and cytoskeletal polarization, none of which are acquired following treatment with TPA. Immunoblotting analyses and capillary zone electrophoresis demonstrated that following RA treatment: lamins A/C and B1, and vimentin decreased to negligible amounts; LAP2 beta, lamin B2 and emerin remained essentially unchanged; lamin B receptor (LBR) increased markedly; histone subtypes H1.4 and 1.5 exhibited dephosphorylation. Following TPA treatment: lamins A/C and B1, B2 and vimentin increased in amount; LAP2 beta and emerin remained essentially unchanged; LBR increased markedly; histone subtypes H1.4 and 1.5 exhibited dephosphorylation. Emerin, which was cytoplasmic in undifferentiated or granulocytic cells, localized into the nuclear envelope following TPA. Normal human granulocytes revealed compositional differences compared to granulocytic forms of HL-60, namely increased vimentin and appearance of histone subtype H1.3. A working hypothesis for nuclear lobulation postulates a combination of: increased nuclear envelope deformability due to lamins A/C and B1 deficiency; an increase in nuclear surface area/volume; an increase in chromatin-nuclear envelope interactions.  相似文献   

12.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

13.
Activation of the endogenous Ca2+-activated phospholipid-dependent protein kinase (protein kinase C) by Ca2+, phosphatidylserine (PS) and phorbol dibutyrate (PBt2) in detergent-solubilized extracts of Swiss 3T3 cells resulted in a very rapid increase (detectable within seconds) in the phosphorylation of an 80 000 mol. wt. protein (termed 80 K). Neither cyclic AMP nor Ca2+ had any effect on 80 K phosphorylation. The 80 K phosphoproteins generated after activation of protein kinase C, both in cell-free conditions and in intact fibroblasts, are identical as judged by one and two-dimensional polyacrylamide slab gel electrophoresis and peptide mapping. Prolonged treatment of cells with phorbol esters causes a selective decrease in protein kinase C activity and prevents the stimulation of 80 K phosphorylation in intact fibroblasts. We now show that extracts from PBt2-treated cultures fail to stimulate 80 K phosphorylation after the addition of the protein kinase C activators. This effect was due to the lack of protein kinase C activity since the addition of exogenous protein kinase C from mouse brain stimulated 80 K phosphorylation in both control and PBt2-treated preparations. The 80 K phosphoprotein generated by activation of endogenous and exogenous protein kinase C yielded similar phosphopeptide fragments after peptide mapping by limited proteolysis. We conclude that the detection of changes in the phosphorylation of 80 K provides a useful approach to ascertain which extracellular ligands activate protein kinase C in intact cells.  相似文献   

14.
Extraction of isolated rat liver nuclear envelopes with 4M urea at various pH values led to differential solubilization of lamin polypeptides. All three lamins A, B and C were solubilized to 70-80% when extraction was performed at pH 8 while only 50-60% of lamins A and C were solubilized at pH 6, leaving lamin B completely insoluble. These results indicated that the interaction of lamin B with the nuclear envelope was strongly dependent upon the ionization state of lamin B and/or of its putative attachment site.  相似文献   

15.
The human blood granulocyte (neutrophil) is adapted to find and destroy infectious agents. The nucleus of the human neutrophil has a segmented appearance, consisting of a linear or branched array of three or four lobes. Adequate levels of lamin B receptor (LBR) are necessary for differentiation of the lobulated nucleus. The levels of other components of the nuclear envelope may also be important for nuclear shape determination. In the present study, immunostaining and immunoblotting procedures explored the levels of various components of the nuclear envelope and heterochromatin, comparing freshly isolated human neutrophils with granulocytic forms of HL-60 cells, a tissue culture model system. In comparison to granulocytic HL-60 cells, blood neutrophil nuclear envelopes contain low-to-negligible amounts of LBR, lamins A/C, B1 and B2, LAP2β and emerin. Surprisingly, a “mitotic” chromosome marker, H3(S10)phos, is elevated in neutrophil nuclei, compared to granulocytic HL-60 cells. Furthermore, neutrophil nuclei appear to be more fragile to methanol fixation, than observed with granulocytic HL-60 cells. Thus, the human neutrophil nucleus appears to be highly specialized, possessing a paucity of nuclear envelope-stabilizing proteins. In consequence, the neutrophil nucleus appears to be very malleable, supporting rapid migration through tight tissue spaces.  相似文献   

16.
17.
In previously published studies (Kreutter, D., Caldwell, A. B., and Morin, M. J. (1985) J. Biol. Chem. 260, 5979-5984), we demonstrated that the activation of the calcium- and phospholipid-dependent protein kinase C by phorbol esters was dissociable from the induction of monocytic differentiation by these agents in HL-60 promyelocytic leukemia cells. We have now compared the effects of two related diterpenes (mezerein and 12-O-tetradecanoylphorbol-13-acetate) and two cell-permeable diacylglycerols (1-oleoyl-2-acetoylglycerol and 1,2-dioctanoylglycerol) on the induction of differentiation in HL-60 cells. Each of these agents activated protein kinase C in vitro and stimulated the phosphorylation of a number of identical proteins in intact HL-60 cells. Exposure to either of the diterpenes at nanomolar concentrations resulted in an inhibition of cell growth and the induction of qualitatively distinct types of monocytic maturation in HL-60 cells. Conversely, neither of the two diacylglycerols was found to be a potent or efficacious inducer of differentiation, as measured by increases in cell adhesion, nonspecific esterase activity, or phagocytosis, even at growth-inhibitory concentrations. However, concurrent exposure of HL-60 cells to both 1,2-dioctanoylglycerol and the calcium ionophore A23187, at concentrations which were without maturational activity when used separately, resulted in measurable increases in both protein phosphorylation and in the fraction of cells expressing a differentiated phenotype. Taken together, these results suggest that specific biochemical effects associated with 12-O-tetradecanoylphorbol-13-acetate, in addition to the activation of protein kinase C, may be important determinants for the induction of leukemia cell differentiation.  相似文献   

18.
Guanine nucleotides and pertussis toxin were used to test for the involvement of a guanine nucleotide binding protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C activity in Swiss 3T3 cells. Addition of vasopressin in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid increase (8 +/- 1-fold after 1 min) in the phosphorylation of an Mr = 80,000 cellular protein (80K), a specific marker for protein kinase C activation. This phosphorylation was selectively blocked by the V1 receptor antagonist Pmp1-0-Me-Tyr2 [Arg8] vasopressin, indicating that the effect was mediated through the vasopressin V1 receptor. Down regulation of protein kinase C by prior prolonged pretreatment of intact cells with phorbol 12,13-dibutyrate (PBt2) blocked the ability of vasopressin to stimulate the phosphorylation of 80K in digitonin-permeabilized cells. Addition of a submaximal concentration of vasopressin together with the GTP analogue GTP-gamma-S caused a synergistic stimulation of 80K phosphorylation. The GDP analogue GDP-beta-S caused a 50% inhibition of the phosphorylation of 80K induced by a saturating concentration of vasopressin and shifted the vasopressin dose-response curve to the right. GDP-beta-S had no effect on the dose-response for the stimulation of 80K phosphorylation induced by PBt2. Prior incubation of intact quiescent cultures of Swiss 3T3 cells with pertussis toxin did not impair either vasopressin-induced increase in cytosolic [Ca2+] or activation of protein kinase C. These findings provide functional evidence for the involvement of a pertussis toxin-insesitive G protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C in Swiss 3T3 cells.  相似文献   

19.
The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of alpha-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.  相似文献   

20.
Treatment of human promyelocytic leukemia cells (HL-60 cells) with 12-O-tetradecanoylphorbol 13-acetate (TPA) results in terminal differentiation of the cells to macrophage-like cells. Treatment of the cells with TPA induced marked enhancement of the phosphorylation of 28- and 67-kDa proteins and a decrease in that of a 75-kDa protein. When the cells were treated with diacylglycerol, i.e. 50 micrograms/ml 1-oleoyl-2-acetylglycerol (OAG), similar changes in the phosphorylation of 28-, 67-, and 75-kDa proteins were likewise observed, indicating that OAG actually stimulates protein kinase C in intact HL-60 cells. OAG (1-100 micrograms/ml), which we used, activated partially purified mouse brain protein kinase C in a concentration-dependent manner. Treatment of HL-60 cells with 10 nM TPA for 48 h caused an increase by about 8-fold in cellular acid phosphatase activity. Although a significant increase in acid phosphatase activity was induced by OAG, the effect was scant compared to that of TPA (less than 7% that of TPA). After 48-h exposure to 10 nM TPA, about 95% of the HL-60 cells adhered to culture dishes. On the contrary, treatment of the cells either with OAG (2-100 micrograms/ml) or phospholipase C failed to induce HL-60 cell adhesion. Ca2+ ionophore A23187 failed to act synergistically with OAG. In addition, hourly or bi-hourly cumulative addition of OAG for 24 h also proved ineffective to induce HL-60 cell adhesion. Our present results do not imply that protein kinase C activation is nonessential for TPA-induced HL-60 cell differentiation, but do demonstrate that protein kinase C activation is not the sole event sufficient to induce HL-60 cell differentiation by means of this agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号