首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.  相似文献   

2.
The lamin B receptor (LBR) is an integral protein of the inner nuclear membrane that interacts with lamin B in vitro. If contains a 204-amino acid nucleoplasmic amino-terminal domain and a hydrophobic carboxyl-terminal domain with eight putative transmembrane segments. We found cell cycle-dependent phosphorylation of LBR using phosphoamino acid analysis and phosphopeptide mapping of in vivo 32P-labeled LBR immunoprecipitated from chicken cells in interphase and arrested in mitosis. LBR was phosphorylated only on serine residues in interphase and on serine and threonine residues in mitosis. Some serine residues phosphorylated in interphase were not phosphorylated in mitosis. To identify a threonine residue specifically phosphorylated in mitosis and the responsible protein kinase, wild-type and mutant LBR nucleoplasmic domain fusion proteins were phosphorylated in vitro by p34cdc2-type protein kinase. Comparisons of phosphopeptide maps to those of in vivo 32P-labeled mitotic LBR showed that Thr188 is likely to be phosphorylated by this enzyme during mitosis. These phosphorylation/dephosphorylation events may be responsible for some of the changes in the interaction between the nuclear lamina and the inner nuclear membrane that occur during mitosis.  相似文献   

3.
Protein phosphorylation by activation of protein kinase C was examined using quiescent cultures of the mouse epidermal keratinocyte line BALB/MK-2. Treatment with phorbol ester caused rapid phosphorylation of five proteins with molecular weights of 80,000, 70,000, 40,000, 34,000, 28,000. Of these proteins, the 70,000 molecular weight one (p70) was studied further. Its position on two-dimensional gel suggested that p70 is nuclear envelope lamin B. This possibility was confirmed by the co-migration of p70 with the lamin fraction of mouse liver and its immunoprecipitation with antinuclear lamina antibody. The lamin B fraction consists of lamin B1 and lamin B2. Evidence that p70 is lamin B2 was obtained by peptide mapping and amino acid sequencing. Lamin B2 is the only lamin that shows a substantial increase in phosphorylation on treatment of BALB/MK-2 cells with phorbol ester.  相似文献   

4.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

5.
While the p34cdc2 kinase is considered to be a critical regulator of mitosis, its function has not yet been directly linked to one of the key events during the onset of mitosis: nuclear envelope breakdown. Here we show that a major structural protein of the nuclear envelope, lamin B2, is phosphorylated by p34cdc2. Results from two-dimensional phosphopeptide mapping experiments demonstrate that the p34cdc2-specific phosphopeptides represent both mitotic and interphase specific phosphorylations of lamin B2 and include the major interphase phosphorylation site. In mitotic cells we detected two distinct forms of lamin B2 which differ in electrophoretic mobility and in degree of phosphorylation. The phosphorylation pattern of lamin B2 generated in vitro by p34cdc2 was more closely related to the less phosphorylated mitotic lamin B2, suggesting that another kinase(s) in addition to p34cdc2 is involved in generating the mitotic phosphorylation pattern. In addition, we show that treatment of interphase cells with okadaic acid, a potent phosphatase inhibitor, leads to the acquisition of mitosis-specific phosphopeptides and can reversibly increase the detergent-solubility of lamin B2. However, the M-phase-like phosphorylation of lamin B2 in itself is not sufficient to induce its disassembly from the nuclear lamina suggesting that an additional event(s) besides phosphorylation is required.  相似文献   

6.
M Peter  E Heitlinger  M Hner  U Aebi    E A Nigg 《The EMBO journal》1991,10(6):1535-1544
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. At the onset of mitosis it depolymerizes, presumably in response to phosphorylation of the lamin proteins. Recently, cdc2 kinase, a major regulator of the eukaryotic cell cycle, was shown to induce lamina depolymerization when incubated with isolated nuclei. Here, we have analysed the structural consequences of lamin phosphorylation by cdc2 kinase using lamin head-to-tail polymers reconstituted in vitro from bacterially expressed chicken lamin B2 protein as a substrate. The effects of phosphorylation were monitored by both a pelleting assay and electron microscopy. We show that lamin B2 head-to-tail polymers disassemble in response to phosphorylation of specific sites that are phosphorylated also during mitosis in vivo. These sites are located within SP/TP motifs N- and C-terminal to the central alpha-helical rod domain of lamin proteins. Subsequent dephosphorylation of these sites by purified phosphatase 1 allows reformation of lamin head-to-tail polymers. The relative importance of N- and C-terminal phosphorylation sites for controlling the assembly state of nuclear lamins was assessed by mutational analysis. Polymers formed of lamin proteins carrying mutations in the C-terminal phosphoacceptor motif could still be disassembled by cdc2 kinase. In contrast, a single point mutation in the N-terminal site (Ser16----Ala) rendered head-to-tail polymers resistant to disassembly. These results emphasize the importance of the N-terminal end domain for lamin head-to-tail polymerization in vitro, and they demonstrate that phosphorylation-dephosphorylation is sufficient to control the longitudinal assembly of lamin B2 dimers.  相似文献   

7.
M Eggert  N Radomski  D Tripier  P Traub  E Jost 《FEBS letters》1991,292(1-2):205-209
Isolated interphase lamin C, obtained from Ehrlich ascites tumor cells, was digested by Lys-C endoproteinase, the resulting peptides separated by reversed-phase HPLC and subjected to microsequencing in order to identify phosphorylation sites in interphase and following phosphorylation in vitro by cdc2-kinase, protein kinase C (PKC) and protein kinase A (PKA), respectively. Nuclear lamin C showed partial phosphorylation of Ser392 and Ser409, and possibly Ser407 in interphase. Phosphorylation was increased in response to cdc2-kinase at Ser390 and Ser392 and to PKC at Ser572. The N-terminal peptide (aa 1-32) containing consensus sequences for the 3 kinases was phosphorylated by cdc2-kinase, PKC and PKA. The sequence data suggests that multiple molecular switches via lamina modification control the dynamic behaviour of the nucleoskeleton during the cell cycle.  相似文献   

8.
Phosphorylation can have profound effects on the properties of nuclear lamins. For instance, phosphorylation of specific sites on mammalian lamins drastically alters their propensity to polymerize. Relatively little is known about the effects of phosphorylation during interphase and about phosphorylation of invertebrate nuclear lamins. Here, using electrospray ionization tandem mass spectrometry, we determined the phosphorylation sites of both interphase and M-phase isoforms of nuclear lamin Dm from Drosophila melanogaster. Interphase lamins are phosphorylated at three sites: two of these sites (Ser25 and a site located between residues 430 and 438) flank the alpha-helical rod domain, whereas the third site (Ser595) is located close to the C-terminus. The M-phase lamin isoform is phosphorylated predominantly at Ser45, a residue contained within a sequence matching the consensus site for phosphorylation by cdc2 kinase. Our study confirms the important role in vivo for cdc2 kinase in M-phase disassembly of nuclear lamins and provides the basis for understanding Drosophila lamin phosphorylation during interphase.  相似文献   

9.
M Peter  J Nakagawa  M Dorée  J C Labbé  E A Nigg 《Cell》1990,61(4):591-602
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. Phosphorylation of lamin proteins is believed to cause lamina disassembly during meiotic and mitotic M phase, but the M phase-specific lamin kinase has not been identified. Here we show that the cdc2 kinase, a major element implicated in controlling the eukaryotic cell cycle, phosphorylates chicken B-type lamins in vitro on sites that are specifically phosphorylated during M phase in vivo. Concomitantly, cdc2 kinase is capable of inducing lamina depolymerization upon incubation with isolated nuclei. One of the target sites of cdc2 kinase is identified as a motif (SPTR) conserved in the N-terminal domain of all lamin proteins. These results lead us to propose that mitotic disassembly of the nuclear lamina results from direct phosphorylation of lamins by cdc2 kinase.  相似文献   

10.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

11.
Akt/PKB is a central activator of multiple signaling pathways coupled with a large number of stimuli. Although both localization and activity of Akt in the nuclear compartment are well-documented, most Akt substrates identified so far are located in the cytoplasm, while nuclear substrates have remained elusive. A proteomic-based search for nuclear substrates of Akt was undertaken, exploiting 2D-electrophoresis/MS in combination with an anti-Akt phosphosubstrate antibody. This analysis indicated lamin A/C as a putative substrate of Akt in C2C12 cells. In vitro phosphorylation of endogenous lamin A/C by recombinant Akt further validated this result. Moreover, by phosphopeptide analysis and point mutation, we established that lamin A/C is phosphorylated by Akt at Ser404, in an evolutionary conserved Akt motif. To delve deeper into this, we raised an antibody against the lamin A Ser404 phosphopeptide which allowed us to determine that phosphorylation of lamin A Ser404 is triggered by the well-known Akt activator insulin, and is therefore to be regarded as a physiological response. Remarkably, expression of S404A lamin A in primary cells from healthy tissue caused the nuclear abnormalities that are a hallmark of Emery-Dreifuss muscular dystrophy (EDMD) cells. Indeed, it is known that mutations at several sites in lamin A/C cause autosomal dominant EDMD. Very importantly, we show here that Akt failed to phosphorylate lamin A/C in primary cells from an EDMD-2 patient with lamin A/C mutated in the Akt consensus motif. Together, our data demonstrate that lamin A/C is a novel signaling target of Akt, and implicate Akt phosphorylation of lamin A/C in the correct function of the nuclear lamina.  相似文献   

12.
The gamma subunit of the human T lymphocyte T3 antigen is rapidly phosphorylated on serine residues in vivo during the initiation of T cell activation by a polyclonal mitogen (Phaseolus vulgaris phytohemagglutinin), an activator of protein kinase C (phorbol 12,13-dibutyrate), and an elevator of intracellular calcium (ionomycin). The sites of phosphorylation were identified by comparing tryptic peptide analyses of T3 gamma chains labeled in vivo with various synthetic peptides, corresponding to portions of the cytoplasmic domain of the gamma chain that had been labeled in vitro using purified protein kinase C. Two sites, serines 123 and 126, were phosphorylated in response to ionomycin, whereas a single site, serine 126, was phosphorylated when T lymphocytes were stimulated by P. vulgaris phytohemagglutinin or when protein kinase C was directly activated by phorbol 12,13-dibutyrate. Immune activation of T cells via the protein kinase C pathway thus induces phosphorylation of a single site on the T3 gamma chain, namely serine 126.  相似文献   

13.
A gelatin-binding glycoprotein from L6 rat myoblasts, designated gp46, was shown to be phosphorylated in vivo. This phosphorylation was increased slightly (18%) by phorbol ester treatment of L6 suggesting protein kinase C involvement. Purified gp46 could be phosphorylated in vitro with protein kinase C, but not by the catalytic subunit of cAMP-dependent protein kinase. Comparison of the phosphotryptic peptide maps of in vitro and in vivo labeled gp46 suggested that in vivo phosphorylation of gp46 may be mediated by protein kinase C.  相似文献   

14.
Both bryostatin 1 and 4 beta-phorbol 12,13-dibutyrate (PBt2) activate Ca2+- and phospholipid-dependent protein kinase (protein kinase C) at the plasma membrane in HL-60 cells (Kraft, A. S., Baker, V. V., and May, W. S. (1987) Oncogene 1, 91-100). However, whereas PBt2 causes HL-60 cells to cease dividing and differentiate, bryostatin 1 antagonizes this effect and allows cells to continue proliferating. To test whether these divergent effects could be due to the differential activation of protein kinase C at the nuclear level, the phosphorylation of nuclear envelope polypeptides was evaluated in cells treated with either bryostatin 1 or PBt2. Bryostatin 1, either alone or in combination with PBt2, but not PBt2 alone, mediates rapid and specific phosphorylation of several nuclear envelope polypeptides. A major target for bryostatin-induced phosphorylation is the major nuclear envelope polypeptide lamin B (Mr = 67,000, pI 6.0). In vitro studies combining purified protein kinase C and HL-60 cell nuclear envelopes demonstrate that bryostatin activates protein kinase C to phosphorylate lamin B, whereas PBt2 does so only weakly, suggesting selective activation of this enzyme toward this substrate. Comparative phosphopeptide and phosphoamino acid analyses demonstrate that bryostatin induces phosphorylation of identical serine sites on lamin B both in whole cells and in vitro. Treatment of whole cells with bryostatin, but not PBt2, leads to specific translocation of activated protein kinase C to the nuclear envelope. Since phosphorylation of lamin B is known to be involved in nuclear lamina depolymerization at the time of mitosis, it is possible that bryostatin-activated protein kinase C activity is involved in this process. Finally, specific activation of protein kinase C at the nuclear membrane could explain, at least in part, the divergent effects of bryostatin 1 and PBt2 on HL-60 cell growth.  相似文献   

15.
Replication of human cytomegalovirus is limited at the level of nucleocytoplasmic transport of viral capsids, a process that requires the disassembly of the nuclear lamina. Deletion of the protein kinase gene UL97 from the viral genome showed that the activity of pUL97 plays an important role for viral capsid egress. Here, we report that p32, a novel cellular interactor of the viral kinase pUL97, promotes the accumulation of pUL97 at the nuclear membrane by recruiting the p32-pUL97 complex to the lamin B receptor. Transfection of active pUL97, but not a catalytically inactive mutant, induced a redistribution of lamina components as demonstrated for recombinant lamin B receptor-green fluorescent protein and endogenous lamins A and C. Consistent with this, p32 itself and lamins were phosphorylated by pUL97. Importantly, overexpression of p32 in human cytomegalovirus-infected cells resulted in increased efficiency of viral replication and release of viral particles. Thus, it is highly suggestive that the cellular protein p32 recruits pUL97 to induce a dissolution of the nuclear lamina thereby facilitating the nuclear export of viral capsids.  相似文献   

16.
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.  相似文献   

17.
G Simos  S D Georgatos 《The EMBO journal》1992,11(11):4027-4036
p58, also referred to as the lamin B receptor, is an intrinsic protein of the inner nuclear membrane that binds in vitro to lamin B. Previous studies have demonstrated that p58 is phosphorylated in vivo and removal of its phosphate moieties affects lamin B binding. Using affinity-purified antipeptide antibodies, we have now immunoisolated p58 from bird erythrocyte lysates under isotonic, non-denaturing conditions. Analysis of the immunopurified material shows that five distinct proteins are tightly and specifically associated with p58. Two of these polypeptides can be identified as nuclear lamins A and B. The immunoisolate also contains a kinase activity that phosphorylates p58 in vivo and in vitro, exclusively at serine residues, as indicated by phosphoamino acid analysis and two-dimensional phosphopeptide mapping. Cell fractionation experiments and in vitro phosphorylation assays demonstrate that the p58 kinase resides in the nuclear envelope and is distinct from protein kinase A and cdc2 kinase, for both of which p58 is an in vitro substrate. These data suggest that p58 is interacting in vivo with a p58 kinase and the nuclear lamins.  相似文献   

18.
Lamins A, B, and C are the major proteins of the mammalian nuclear lamina and have been well studied in BHK-21 cells. Using in vivo labelling, cell fractionation, and immunoprecipitation, we have found that lamins have different patterns of nuclear transport and solubility. Newly synthesized lamin A is translocated to the nucleus faster than lamin C or B. It is the most tightly bound lamin and cannot be extracted from the lamina by nonionic detergent or high-salt buffers. Lamins B and C migrate more slowly to the nucleus. Partitioning between cytoskeleton and detergent-soluble fractions shows that integration of lamins B and C is not completed before a 1-h chase. For lamin C this process is dependent upon protein synthesis and can be inhibited with cycloheximide. Even though lamins A and C are almost identical, lamin C is never firmly bound to the lamina and can be partially solubilized upon high-salt treatment.  相似文献   

19.
K Furukawa  N Panté  U Aebi    L Gerace 《The EMBO journal》1995,14(8):1626-1636
Lamina-associated polypeptide 2 (LAP2) is an integral membrane protein of the inner nuclear membrane, which binds directly to both lamin B1 and chromosomes in a mitotic phosphorylation-regulated manner. The biochemical and physiological properties of LAP2 suggest an important role in nuclear envelope re-assembly at the end of mitosis and/or anchoring of the nuclear lamina and interphase chromosomes to the nuclear envelope. We describe the cDNA cloning of LAP2 and characterization of its membrane topology and targeting to the nuclear envelope. The LAP2 cDNA sequence predicts a protein of 452 amino acids, containing a large hydrophilic domain with several potential cdc2 kinase phosphorylation sites and a single putative membrane-spanning sequence at residues 410-433. Immunogold localization of an LAP2 epitope in isolated nuclear envelopes indicates that the large amino-terminal hydrophilic domain (residues 1-409) is exposed to the nucleoplasm. By expressing deletion mutants of LAP2 in cultured cells, we have identified multiple regions in its nucleoplasmic domain that promote localization at the nuclear envelope. These data suggest that targeting of LAP2 to the nuclear envelope is mediated by cooperative interactions with multiple binding sites at the inner nuclear membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号