首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
童中艺  彭芳  王佐 《生命的化学》2006,26(2):155-157
血管内皮是循环血液和血管壁组织间的一层天然屏障,在维持血管的正常形态和功能中起重要作用。内皮受损后可引起炎症反应、单核细胞浸润和血管平滑肌细胞增生,促发动脉粥样硬化和再狭窄。因此,直接修复受损血管内皮,促使血管重新内皮化已经成为防止动脉粥样硬化及再狭窄领域的重要课题。大量研究表明,内皮祖细胞(EPC)参与受损血管的重新内皮化。该文就内皮祖细胞的来源、鉴定、参与重新内皮化进行综述。  相似文献   

2.
目的寻找一种简单、准确的方法建立动脉的不同剪切力动物模型,为研究剪切力在心血管系统中的作用及机制奠定基础。方法 30只SD大鼠随机分为3组,即颈总动脉结扎组、股动静脉吻合组和髂总动脉结扎组,每组又分为手术组和假手术组(对照组),利用多普勒超声仪检测手术前后动脉血流,估算血流剪切力的变化。利用免疫荧光组织化学法检测不同剪切力下血管内皮e NOS的表达情况。结果颈总动脉结扎法大鼠死亡率高;股动静脉吻合法手术耗时长,且因动脉太小不易测得股动脉血流;单侧髂总动脉结扎手术可以使双侧髂总动脉分别形成不同血流剪切力。单侧髂总动脉结扎术后,结扎侧髂总动脉内皮e NOS免疫反应性减弱,而结扎对侧e NOS免疫反应性增强。结论单侧髂总动脉结扎手术简单易操作,髂总动脉血流速度通过多普勒超声仪可获得,是制作不同剪切力动物模型的最佳方法。  相似文献   

3.
脂蛋白经渗漏或有缺陷的血管内皮滞留于内皮下是动脉粥样硬化的始动过程。为了减少对血管壁的侵害和促进血管壁功能的恢复,三种主要的防御机制在维持心血管内环境稳态过程中发挥重要作用:即内皮组细胞修复内皮,血管新生,巨噬细胞介导的胆固醇逆向转运。本文根据这三大促进血管健康的机制与动脉粥样硬化的关系作一综述。  相似文献   

4.
动脉粥样硬化是心血管疾病中最常见的一种血管病变,影响着血管、免疫、代谢等系统。动脉粥样硬化发生发展是一个复杂的过程,它损伤血管内皮,平滑肌等细胞,涉及到多种细胞因子的相互作用。而CGRP具有抑制血管平滑肌增值作用,对预防血管术后再狭窄有重要意义,CGRP能舒张血管,对防治氧化应激引起的内皮损伤具有保护作用,但其机制还不完全清楚。  相似文献   

5.
邢明媚  韦知樱  许俊 《生物磁学》2011,(12):2398-2400
动脉粥样硬化是心血管疾病中最常见的一种血管病变,影响着血管、免疫、代谢等系统。动脉粥样硬化发生发展是一个复杂的过程,它损伤血管内皮,平滑肌等细胞,涉及到多种细胞因子的相互作用。而CGRP具有抑制血管平滑肌增值作用,对预防血管术后再狭窄有重要意义,CGRP能舒张血管,对防治氧化应激引起的内皮损伤具有保护作用,但其机制还不完全清楚。  相似文献   

6.
血管内皮细胞(EC)位于血管内膜表面,具有抗血栓形成及选择通透性等生理功能。动脉内皮长期反复受损是动脉粥样硬化(AS)病变形成的始动环节。保护EC免受损伤是防止AS发生发展的关键。国外的研究表明,血液中过量的低密度脂蛋白(LDL)是引起内皮损伤  相似文献   

7.
目的:冠状动脉粥样硬化好发于具有特殊几何构型的血管部位,提示血流动力学参数在粥样硬化形成方面起到重要作用.以往研究多局限于理想的血管模型,本文旨在探索以CT图像为基础构建个体化冠状动脉血流动力学模型的技术方法,对人体左冠状动脉前降支粥样硬化病变狭窄处进行计算流体动力学(computational fluid dynamics,CFD)数值模拟,探讨冠状动脉粥样硬化病变形成和发展的血流动力学机制.方法:用MIMICS软件读取CTA数据,以CT图像为基础进行冠状动脉三维几何建模,假设动脉血流为层流、不可压缩、牛顿流体,入口血液流速随时间周期性变化,应用有限体积法FLUENT软件进行血流数值模拟,分析与动脉粥样硬化形成、发展相关的血流动力学参数.结果:获得个体化左冠状动脉前降支狭窄处血管模型及血流动力学参数,数值模拟结果包括冠状动脉的血液流场、壁面压力(wall pressure WP)及壁面切应力(wall shear stress WSS)分布,可见狭窄段血管血液流速加快,WP降低、WSS增高,且在狭窄邻近区域出现低WSS区、较高的WP及血液湍流区域.结论:以CT图像为基础的CFD技术是在体评价人狭窄冠状动脉内血流动力学状况与冠状动脉粥样硬化病变之间关系的有效方法,能够更为真实的建立人体血管几何模型,为分析血流动力学参数与冠状动脉粥样硬化形成与发展的关系提供研究手段.  相似文献   

8.
动脉脉管系统在静息状态下处于收缩状态,具有一定的血管紧张度。血流增加时内皮细胞通过释放血管内皮舒张因子介导平滑肌舒张来维持正常的血压。当内皮依赖的舒张作用下降时,血流增加会导致局部或全身血压升高,最终引发高血压。内皮功能障碍是高血压的特征性异常变化之一,而一氧化氮(NO)-介导的舒张血管途径被认为对血压调节有重要作用。本文将对正常及高血压状态下NO相关的内皮功能做一综述。  相似文献   

9.
目的:对应用三维重构得到的人体真实椎动脉进行血液两相流数值模拟,与经典单相流牛顿血液模型对比,分析动脉粥样硬化等病因与椎动脉狭窄处的血流动力学关系。方法:把考虑血细胞和血浆的两相流血液模型应用到逆向工程方法构建的基于人体生理解剖特征的椎动脉三维几何模型中去进行数值模拟,分析血细胞分布情况等血流动力学参数,并与单相流模型的模拟结果进行对比。结果:通过瞬态模拟计算,得到了椎动脉在心动周期内不同时刻的两相流和单相流模型的血流动力学参数。结论:通过对比单相流数值模拟结果,得出血管狭窄处血细胞出现聚集,血流更加复杂和低壁面切应力分布等与动脉粥样硬化及血栓的形成相关的结论。并且与两相流模型相比,单相流模型存在如无法获得如血细胞分布等不足,为进一步深入研究椎动脉等疾病的发病机理提供方法和理论支持。  相似文献   

10.
在动脉粥样硬化(atherosclerosis,AS)的发生过程中,以往研究认为斑块内新生血管中红细胞的渗出对AS进展起到关键作用,并且血流扰动部位内膜下红细胞的积聚也是AS发生过程中的的早期事件。然而血流扰动、内膜下红细胞积聚与AS之间的关系与机制尚不清楚。来自巴黎狄德罗大学血管转化科学实验室的团队通过观察、评估从移植心脏中分离的人冠状动脉样品在内膜下中显示出血液进入的迹象,经过血流动力学计算分析得出内膜出血发生于血流障碍部位。  相似文献   

11.
Endothelial cells (ECs) respond to fluid shear stress. They reveal shear stress related morphological changes in both their cell shape and cytoskeletal organization. Little is known about the cytoskeletal organization of ECs in situ. We studied, together with the living ultrasound high resolution imaging system, the distribution of stress fibers (SFs), certain focal adhesion (FA) and signal transduction associated proteins in guinea pig aortic and venous ECs. Although SFs present in the basal portion of venous ECs ran along the direction of the blood flow, their size was smaller and their number was fewer than those of aortic ECs. Venous ECs were elongated to the direction of flow than in aortic ECs exposed over normal shear stress (SS). Since fluid SS in the vein is low, a sustained and uni-directional low SS over a long period might thus cause these structural features observed in venous ECs.  相似文献   

12.
Vascular endothelial cells (ECs) are constantly subjected to blood flow-induced shear stress and the influences of neighboring smooth muscle cells (SMCs). In the present study, a coculture flow system was developed to study the effect of shear stress on EC-SMC interactions. ECs and SMCs were separated by a porous membrane with only the EC side subjected to the flow condition. When ECs were exposed to a shear stress of 12 dynes/cm2 for 24 h, the cocultured SMCs tended to orient perpendicularly to the flow direction. This perpendicular orientation of the cocultured SMCs to flow direction was not observed when ECs were exposed to a shear stress of 2 dynes/cm2. Under the static condition, long and parallel actin bundles were observed in the central regions of the cocultured SMCs, whereas the actin filaments localized mainly at the periphery of the cocultured ECs. After 24 h of flow application, the cocultured ECs displayed very long, well-organized, parallel actin stress fibers aligned with the flow direction in the central regions of the cells. Immunostaining of platelet endothelial cell adhesion molecule-1 confirmed the elongation and alignment of the cocultured ECs with the flow direction. Coculture with SMCs under static condition induced EC gene expressions of growth-related oncogene-alpha and monocyte chemotactic protein-1, and shear stress was found to abolish these SMC-induced gene expressions. Our results suggest that shear stress may serve as a down-regulator for the pathophysiologically relevant gene expression in ECs cocultured with SMCs.  相似文献   

13.
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to fluid frictional force (shear stress) induced by blood flow, and shear stress affects the intracellular calcium ([Ca2+]i), which initiates cellular responses. Here, we studied the effect of long-term exposure of shear stress on [Ca2+]i responses in cultured ECs by using a confocal laser microscope and calcium indicator. At the initiation of shear stress of 20 dyn/cm2 (0 hr), 27% of the cells exhibited [Ca2+]i responses. This percentage gradually decreased with increasing exposure time, reaching about 4% after 24 hr of exposure. These data indicate that long-term shear-stress exposure affects [Ca2+]i responses in cultured ECs. Furthermore, we studied the effect of magnitude of shear stress on macromolecule uptake. For the low shear-stress, the uptake was enhanced, whereas the uptake was inhibited for higher shear-stress.  相似文献   

14.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   

15.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

16.
17.
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm2. Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.  相似文献   

18.
Endothelial nitric oxide synthase (eNOS) is the primary enzyme that produces nitric oxide (NO), which plays an important role in blood vessel relaxation. eNOS activation is stimulated by various mechanical forces, such as shear stress. Several studies have shown that local cooling of the human finger causes strong vasoconstriction, followed after several minutes by cold-induced vasodilation (CIVD). However, the role played by endothelial cells (ECs) in blood vessel regulation in respond to cold temperatures is not fully understood. In this study, we found that low temperature alone does not significantly increase or decrease eNOS activation in ECs. We further found that the combination of shear stress with temperature change leads to a significant increase in eNOS activation at 37 °C and 28 °C, and a decrease at 4 °C. These results show that ECs play an important role in blood vessel regulation under shear stress and low temperature.  相似文献   

19.
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to shear stress induced by blood flow in vivo, and shear stress affects ATP-dependent macromolecular transport in ECs. However, the relationship between the ATP production and shear stress is still unclear. We, therefore, evaluated mitochondrial ATP synthesis activity in cultured endothelial cells exposed to shear stress, using a confocal laser scanning microscope (CLSM) and a mitochondrial membrane potential probe (5,5',6,6'-tetrachloro-1,1',3, 3'-tetraethyl-benzimidazolycarbocyanine iodide, JC-1). Low shear stress (10 dyn/cm(2)) increased mitochondrial membrane potential by 30%. On the contrary, high shear stress (60 dyn/cm(2)) decreased it by 20%. This observation was consistent with the ATP-dependent albumin uptake into endothelial cells. Our results indicate that ATP synthetic activity is related to the albumin uptake into endothelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号