首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
动脉粥样硬化是心血管疾病中最常见的一种血管病变,影响着血管、免疫、代谢等系统。动脉粥样硬化发生发展是一个复杂的过程,它损伤血管内皮,平滑肌等细胞,涉及到多种细胞因子的相互作用。而CGRP具有抑制血管平滑肌增值作用,对预防血管术后再狭窄有重要意义,CGRP能舒张血管,对防治氧化应激引起的内皮损伤具有保护作用,但其机制还不完全清楚。  相似文献   

2.
内源性甲醛与心血管疾病   总被引:1,自引:0,他引:1  
内源性甲醛是甲胺由氨基脲敏感性胺氧化酶催化而生成,广泛存在于动物体内多种组织细胞。已经证实,内源性甲醛参与了神经变性病、免疫性疾病以及肿瘤等疾病的发病过程。脂肪细胞、血管内皮细胞和平滑肌细胞富含甲醛生成酶氨基脲敏感性胺氧化酶(semicarbazide-sensitive a-mine oxidase,SSAO)。甲醛具有细胞毒性,易损伤血管内皮并介导多种致病因素诱导的血管损伤过程,在动脉粥样硬化和糖尿病及其并发症的发病中都具有重要作用。  相似文献   

3.
C-型钠尿肽与血管损伤性疾病   总被引:2,自引:0,他引:2  
C-型钠尿肽(C-type natriuretic peptide, CNP)作为钠尿肽家系的一员, 主要是由血管内皮分泌,CNP与血管平滑肌细胞钠尿肽受体-B(NPR-B)结合,激活颗粒型鸟苷酸环化酶,促进细胞内cGMP 水平升高,以旁分泌和/或自分泌方式调节循环系统功能稳态.CNP广泛分布于血管系统,尤其在内皮细胞中高表达.CNP具有利钠、利尿、调节血管张力、抑制血管平滑肌细胞迁移、增殖等作用,与高血压、动脉粥样硬化、血栓形成、冠脉成形术后再狭窄和血管钙化等多种血管损伤性疾病密切相关.  相似文献   

4.
童中艺  彭芳  王佐 《生命的化学》2006,26(2):155-157
血管内皮是循环血液和血管壁组织间的一层天然屏障,在维持血管的正常形态和功能中起重要作用。内皮受损后可引起炎症反应、单核细胞浸润和血管平滑肌细胞增生,促发动脉粥样硬化和再狭窄。因此,直接修复受损血管内皮,促使血管重新内皮化已经成为防止动脉粥样硬化及再狭窄领域的重要课题。大量研究表明,内皮祖细胞(EPC)参与受损血管的重新内皮化。该文就内皮祖细胞的来源、鉴定、参与重新内皮化进行综述。  相似文献   

5.
血管平滑肌细胞(vascular smooth muscle cell,VSMC)表型转化是血管损伤性疾病动脉粥样硬化、高血压和血管成形术后再狭窄等的共同病理生理过程.平滑肌22 alpha (smooth muscle 22 alpha, SM22α) 是一种VSMC分化标志物,其表达具有平滑肌组织特异性和细胞表型特异性. 该蛋白不仅作为一种肌动蛋白细胞骨架相关蛋白参与VSMC骨架组构和收缩调节,它还参与VSMC的增殖、炎症和氧化应激等进程. 本文就SM22α 的结构特征及其在VSMC血管损伤中的作用机制进行综述.  相似文献   

6.
血流剪切力在动脉粥样硬化形成中的作用   总被引:1,自引:0,他引:1  
血管内皮位于血管壁和血液的界面,直接与血流接触而持续受血流剪切力的作用。血管内皮细胞能感受血流机械力的变化,通过激活相应的信号通路调节血管内皮和平滑肌的结构和功能。研究发现,血液流动力的形式与动脉粥样硬化的发生发展有密切的关系。本综述将就血流剪切力与动脉粥样硬化的相互关系及作用机制的最新研究进展作简要介绍。  相似文献   

7.
他汀类药物具有抗动脉粥样硬化的多向作用.其多向作用机制与他汀分子结构及其代谢过程有关,固醇调节素结合蛋白(SREBP)参与调节.他汀抑制血管平滑肌细胞(VSMC)的增生和迁移,激活VSMC的SREBPs,抑制VSMC对血管内皮生长因子(VEGF)的表达.本文综述SREBP调节他汀类药物对VSMC的作用.  相似文献   

8.
血管内皮细胞(EC)位于血管内膜表面,具有抗血栓形成及选择通透性等生理功能。动脉内皮长期反复受损是动脉粥样硬化(AS)病变形成的始动环节。保护EC免受损伤是防止AS发生发展的关键。国外的研究表明,血液中过量的低密度脂蛋白(LDL)是引起内皮损伤  相似文献   

9.
C型利钠利尿肽与心血管疾病   总被引:7,自引:0,他引:7  
C型利钠利尿肽(CNP)是利钠利尿肽家族的第三个成员,CNP主要是由血管内皮分泌,与血管平滑肌细胞NRP-B受体结合激活颗粒型鸟苷酸环化酶,促进细胞内cGMP水平升高而起作用。除能舒张血管外还具有抑制平滑肌细胞增殖、迁移和细胞外基质形成等心血管效应,并以自分泌和旁分泌的方式参与血管重逆,在心血管疾病的发生发展中具有重要的病生理意义,可能是内源性抗损伤因素之一。  相似文献   

10.
解偶联蛋白2(UCP2)是核DNA编码的线粒体内膜阴离子转运体,广泛存在多种组织和器官中。其通过耗散线粒体内膜质子梯度发挥可诱导的解偶联作用。内皮细胞损伤是多种血管疾病的始动环节,近年来的研究发现,UCP2在动脉粥样硬化、高血压、糖尿病等中发挥血管内皮保护作用。本文对UCP2内皮保护作用的相关机制作一综述。  相似文献   

11.
动脉粥样硬化是一种病因复杂的血管壁慢性炎症性疾病。动脉粥样硬化及其相关并发症已成为人类死亡的主要原因,然而,其病因和发病机制尚未完全阐明,治疗效果还不满意。目前已经证实,动脉内皮细胞功能发生障碍是动脉粥样硬化的始动过程,内皮细胞功能失调和内皮细胞丢失是动脉粥样硬化症的主要特点;而血管平滑肌细胞的异常增生在动脉粥样硬化的发生发展中也扮演着重要角色。因此,探索有效措施促进有益的内皮细胞再生并抑制平滑肌细胞增生是血管损伤防治的关键。近年来有研究发现,体外输注的间充质干细胞能够向受损部位募集,并进一步分化为内皮细胞,修复损伤血管。然而,也有研究显示体外输注的间充质干细胞还可以分化为血管平滑肌细胞进而在血管局部增生,参与血管再狭窄的发生。文中综述了间充质干细胞输注对动脉粥样硬化发展的最新研究进展,希望为后续开展的用间充质干细胞治疗动脉粥样硬化的研究提供一定的参考。  相似文献   

12.
Calcitonin gene-related peptide (CGRP) has a beneficial effect in pulmonary hypertension and is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold promise for use in adult stem cell-based ex vivo gene therapy. To test the hypothesis that genetically engineered MSCs secreting CGRP can inhibit vascular smooth muscle cell proliferation, rat MSCs were isolated, ex vivo expanded, and transduced with adenovirus containing CGRP. Immunocytochemical analysis demonstrated that wild type rat MSCs express markers specific for stem cells, endothelial cells, and smooth muscle cells including Thy-1, c-Kit, von Willebrand Factor and alpha-smooth muscle actin. Immunocytochemistry confirmed the expression of CGRP by the transduced rat MSCs. The transduced rat MSCs released 10.3+/-1.3 pmol CGRP/1 x 10(6) cells/48 h (mean+/-S.E.M., n=3) into culture medium at MOI 300 and the CGRP-containing culture supernatant from the transduced cells inhibited the proliferation of rat pulmonary artery smooth muscle cells (PASMCs) and rat aortic smooth muscle cells (ASMCs) in culture. Co-culture of the transduced rat MSCs with rat PASMCs or rat ASMCs also inhibited smooth muscle cell proliferation. These findings suggest that this novel adult stem cell-based CGRP gene therapy has potential for the treatment of cardiovascular diseases including pulmonary hypertension.  相似文献   

13.
Vascular endothelial cells play a fundamental role in the control of vascular tone, and therefore in the control of local blood flow, by releasing various contracting (endothelin, prostaglandins) and relaxing (prostacycline, NO) factors. An additional mechanism involving the hyperpolarization of the vascular smooth muscle cells is observed mainly in the coronary vascular bed and in the periphery. This phenomenon was attributed to an elusive endothelial factor called endothelium-derived hyperpolarizing factor (EDHF). This mechanism is now better understood. It involves first an increase in the endothelial intracellular concentration of calcium, the activation of endothelial potassium channels and the resulting hyperpolarization of the endothelial cells. The hyperpolarization of the endothelial cells is transmitted to the smooth muscle cells by different pathways. This hyperpolarization propagates along the vessels not only via the smooth muscle cells but also via the endothelial cells. Therefore, the endothelial layer can also be considered as a conducting tissue. The discovery of specific inhibitors of the endothelial cell hyperpolarization allows the assessment of the contribution of EDHF-mediated responses in the control of vascular tone.  相似文献   

14.
The vessel wall has usually been thought to be relatively quiescent. But the discovery of progenitor cells in many tissues and in the vasculature itself has led to a reconsideration of the vascular biology. The presence of circulating endothelial and smooth muscle progenitors able to home to the injured vascular wall is a firm acquisition; less known is the notion, coming from embryonic and adult tissue studies, that stem cells able to differentiate into endothelial cells and smooth muscle cells also reside in the arterial wall. Moreover, the existence of a vasculogenic zone has recently been identified in adult human arteries; this niche-like zone is believed to act as a source of progenitors for postnatal vasculogenesis. From the literature it is already apparent that a complex interplay between circulating and resident vascular wall progenitors takes place during embryonal and postnatal life; a structural/functional disarray of these intimate stem cell compartments could hamper appropriate vascular repair, the development of vascular wall disease being the direct clinical consequence in adult life. This review gives an overview of adult large vessel progenitors established in the vascular wall during embryogenesis and their role in the maintenance of wall homeostasis.  相似文献   

15.
Summary Both smooth muscle cells and endothelial cells play an important role in vascular wound healing. To elucidate the role of fructose-1, 6-diphosphate, cell proliferation and cell migration studies were performed with human endothelial cells and rat smooth muscle cells. To mimic blood vessels, endothelial and smooth muscle cells were used in 1:10, 1:5, and 1:1 concentrations, respectively, mimicking large-, mid-, and capillary-sized blood vessels. Cell migration was studied with fetal bovine serum-starved cells. For cell proliferation assay, cells were plated at 30–50% confluency and then starved. The cells were incubated for 48 h with fructose-1, 6-diphosphate at (per ml) 10 mg, 1 mg, 500 μg, 250 μg, 100 μg, and 10 μg, pulsed with tritiated-thymidine and incubated with 1 N NaOH for 30 min at room temperature, harvested, and counted. For migration assay, confluent cells were starved, wounded, and incubated for 24 h with same concentrations of fructose-1, 6-diphosphate as in proliferation assay. The cells were fixed and counted. Smooth muscle cell proliferation was inhibited by fructose-1, 6-diphosphate at 10 mg/ml. In the xenograft models of 1:10, 1:5, and 1:1 fructose-1, 6-diphosphate inhibited proliferation at 10 mg/ml. In migration studies 10 mg fructose-1, 6-diphosphate per ml was inhibitory to both cell types. In large-, mid-, and capillary-sized blood vessels, fructose-1, 6-diphosphate inhibited proliferation of both cell types at 10 mg/ml. At the individual cell level, fructose-1, 6-diphosphate is nonstimulatory to proliferation of endothelial cells while inhibiting migration, and it acts on smooth muscle cells by inhibiting both proliferation and migration.  相似文献   

16.
Gao YJ  Stead S  Lee RM 《Life sciences》2002,70(22):2675-2685
Papaverine is a vasodilator commonly used in the treatment of vasospasmic diseases such as cerebral spasm associated with subarachnoid hemorrhage, and in the prevention of spasm of coronary artery bypass graft by intraluminal and/or extraluminal administration. In this study, we examined whether papaverine in the range of concentrations used clinically causes apoptosis of vascular endothelial and smooth muscle cells. Apoptotic cells were identified by morphological changes and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. In porcine coronary endothelial cells (EC) and rat aortic smooth muscle cells (SMC), papaverine at the concentration of 10(-3) M induced membrane blebbing within 1 hour of incubation. Nuclear condensation and fragmentation were found after 24 hours of treatment. The number of apoptotic cells stained with the TUNEL method was significantly higher in the EC and the SMC after 24 hours of incubation with papaverine at the concentrations of 10(-4) and 10(-3) M than their respective controls. Acidified saline solution (pH 4.8, as control for 10(-3) M papaverine hydrochloride) did not cause apoptosis in these cells. These results showed that papaverine could damage endothelial and smooth muscle cells by inducing changes which are associated with events leading to apoptosis. Since integrity of endothelial cells is critical for normal vascular function, vascular administration of papaverine for clinical use, especially at high concentrations (> or = 10(-4) M), should be re-considered.  相似文献   

17.
The concept of endothelium-derived relaxing factor (EDRF) implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium in response to vasorelaxants such as acetylcholine (ACh) acts on the underlying vascular smooth muscle cells (VSMC) inducing vascular relaxation. The EDRF concept was derived from experiments on denuded blood vessel strips and, in frames of this concept, VSMC were regarded as passive recipients of NO from endothelial cells. However, it was later found that VSMC express NOS by themselves, but the principal question remained unanswered, is the NO generation by VSMC physiologically relevant? We hypothesized that the destruction of the vascular wall anatomical integrity by rubbing off the endothelial layer might increase vascular superoxides that, in turn, reduced the NO bioactivity as a relaxing factor. To test our hypothesis, we examined ACh-induced vasorelaxation under protection against oxidative stress and found that superoxide scavengers restored vasodilatory responses to ACh in endothelium-deprived blood vessels. These findings imply that VSMC can release NO in amounts sufficient to account for the vasorelaxatory response and challenge the concept of the obligatory role of endothelial cells in the relaxation of arterial smooth muscle.  相似文献   

18.
Pan CS  Qi YF  Wang SH  Zhao J  Bu DF  Li GZ  Tang CS 《Regulatory peptides》2004,120(1-3):77-83
Vascular calcification is a common finding in many cardiovascular diseases. Paracrine/autocrine changes in calcified vessels, and the secreted factors participate in and play an important role in the progress of calcification. Adrenomedullin (ADM) is a potent vasodilator peptide secreted by vascular smooth muscle cells (VSMCs) and vascular endothelial cells. Recently, receptor activity-modifying proteins (RAMPs) have been shown to transport calcitonin receptor-like receptor (CRLR) to the cell surface to present either as CGRP receptor or ADM receptor. In this work, we explored the production of ADM, alterations and significance of ADM mRNA and its receptor system components—CRLR and RAMPs mRNA in calcified VSMCs. Our results showed that calcium content, 45Ca2+ uptake and alkaline phosphatases (ALPs) activity in calcified VSMCs were increased, respectively, compared with control VSMCs. Content of ADM in medium was increased by 99% (p<0.01). Furthermore, it was found that the levels of ADM, CRLR, RAMP2 and RAMP3 mRNA in calcified cells were elevated, respectively, compared with that of control. The elevated levels of CRLR, RAMP2 and RAMP3 mRNA were significant correlation with ADM mRNA (r=0.83, 0.92 and 0.93, respectively, all p's<0.01) in calcified VSMCs. The results show that calcified VSMCs generate an increased amount of ADM, up-regulate gene expressions of ADM and its receptor system components—CRLR, RAMP2 and RAMP3, suggesting an important role of ADM and its receptor system in the regulation of vascular calcification.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号