首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field‐based and remote‐sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium‐resolution remote sensing data, organized by day of year, to explore the influence of climate‐related landscape factors on the timing of spring and autumn leaf‐area trajectories in mid‐Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape‐scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.  相似文献   

2.
Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature‐limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.  相似文献   

3.
Contrary to the generally advanced spring leaf unfolding under global warming, the effects of the climate warming on autumn leaf senescence are highly variable with advanced, delayed, and unchanged patterns being all reported. Using one million records of leaf phenology from four dominant temperate species in Europe, we investigated the temperature sensitivities of spring leaf unfolding and autumn leaf senescence (ST, advanced or delayed days per degree Celsius). The ST of spring phenology in all of the four examined species showed an increase and decrease during 1951–1980 and 1981–2013, respectively. The decrease in the ST during 1981–2013 appears to be caused by reduced accumulation of chilling units. As with spring phenology, the ST of leaf senescence of early successional and exotic species started to decline since 1980. In contrast, for late successional species, the ST of autumn senescence showed an increase for the entire study period from 1951 to 2013. Moreover, the impacts of rising temperature associated with global warming on spring leaf unfolding were stronger than those on autumn leaf senescence. The timing of leaf senescence was positively correlated with the timing of leaf unfolding during 1951–1980. However, as climate warming continued, the differences in the responses between spring and autumn phenology gradually increased, so that the correlation was no more significant during 1981–2013. Our results further suggest that since 2000, due to the decreased temperature sensitivity of leaf unfolding the length of the growing season has not increased any more. These finding needs to be addressed in vegetation models used for assessing the effects of climate change.  相似文献   

4.
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf‐out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6–8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf‐out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf‐out, to extending the growing season under future warmer conditions.  相似文献   

5.
Satellite data indicate significant advancement in alpine spring phenology over decades of climate warming, but corresponding field evidence is scarce. It is also unknown whether this advancement results from an earlier shift of phenological events, or enhancement of plant growth under unchanged phenological pattern. By analyzing a 35‐year dataset of seasonal biomass dynamics of a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and faster growth, without changing annual biomass production. Biomass production increased in spring due to a warming‐induced earlier onset of plant growth, but decreased in autumn due mainly to increased water stress. Plants grew faster but the fast‐growing period shortened during the mid‐growing season. These findings provide the first in situ evidence of long‐term changes in growth patterns in alpine grassland plant communities, and suggest that earlier phenology and faster growth will jointly contribute to plant growth in a warming climate.  相似文献   

6.
内蒙古克氏针茅草原植物物候及其与气候因子关系   总被引:9,自引:0,他引:9       下载免费PDF全文
 植物物候作为气候变化敏感的生物圈指示计, 已经成为全球变化研究的热点。利用1985~2002年地面物候观测数据, 构建了内蒙古克氏针茅(Stipa krylovii)草原植物物候的时间序列谱, 并分析了植物物候的时间变异与气候因子之间的相关关系。结果表明: 1) 从1985~2002年内蒙古克氏针茅草原的气候朝着暖干趋势发展, 主要表现在春、夏气温的显著性增加与秋季(9月)降水的显著性减少; 2) 主要植物物候的变化整体呈返青期推后其它物候期提前趋势; 3) 植物生长盛期(7、8月)对气候变化最敏感; 4) 光照和温度是影响内蒙古克氏针茅草原植物物候格局的主要因素, 年内最寒冷的1月月均温和2、3月的光照对春季返青期具有负效应, 而其它物候期与7、8月的光照则呈显著的负相关关系, 6、7月的降水对发育盛期的花序形成、抽穗与开花具有显著的负效应, 8、9月的降水量能显著推后枯黄期的结束, 从而有利于生长季的延长。  相似文献   

7.
Plant phenology will likely shift with climate change, but how temperature and/or moisture regimes will control phenological responses is not well understood. This is particularly true in Mediterranean climate ecosystems where the warmest temperatures and greatest moisture availability are seasonally asynchronous. We examined plant phenological responses at both the population and community levels to four climate treatments (control, warming, drought, and warming plus additional precipitation) embedded within three prairies across a 520 km latitudinal Mediterranean climate gradient within the Pacific Northwest, USA. At the population level, we monitored flowering and abundances in spring 2017 of eight range‐restricted focal species planted both within and north of their current ranges. At the community level, we used normalized difference vegetation index (NDVI) measured from fall 2016 to summer 2018 to estimate peak live biomass, senescence, seasonal patterns, and growing season length. We found that warming exerted a stronger control than our moisture manipulations on phenology at both the population and community levels. Warming advanced flowering regardless of whether a species was within or beyond its current range. Importantly, many of our focal species had low abundances, particularly in the south, suggesting that establishment, in addition to phenological shifts, may be a strong constraint on their future viability. At the community level, warming advanced the date of peak biomass regardless of site or year. The date of senescence advanced regardless of year for the southern and central sites but only in 2018 for the northern site. Growing season length contracted due to warming at the southern and central sites (~3 weeks) but was unaffected at the northern site. Our results emphasize that future temperature changes may exert strong influence on the timing of a variety of plant phenological events, especially those events that occur when temperature is most limiting, even in seasonally water‐limited Mediterranean ecosystems.  相似文献   

8.
《Global Change Biology》2018,24(8):3537-3545
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life‐span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.  相似文献   

9.
As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953–2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species'' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology.  相似文献   

10.
Evidence that global warming has altered the phenology of the biosphere, possibly contributing to increased plant production in the northern hemisphere, has come from a diversity of observations at scales ranging from the view of the back yard to satellite images of the earth. These observations, coupled with an understanding of the effects of temperature on plant phenology, suggest that future changes in the atmosphere and climate could alter plant phenology with unknown or unpredictable consequences. We assessed the effects of simulated climatic warming and atmospheric CO2 enrichment on the spring and autumn phenology of maple trees (Acer rubrum and A. saccharum) growing for four years in open‐top field chambers. CO2 enrichment (+300 ppm) had no consistent effects on the timing of budbreak and leaf unfolding in the spring or leaf abscission in the autumn. Warming (+4°C) usually had predictable effects: in two of the three years of assessment, budbreak occurred earlier in warm chambers than in ambient temperature chambers, and leaf abscission always occurred later. The lengthening of the growing season could contribute to increased productivity, although effects of temperature on other physiological processes can concurrently have negative effects on productivity. In 1995, budbreak was unexpectedly delayed in the warmer chambers, apparently the result of advanced budbreak leading to injury from a late‐spring frost. Likewise, there was increased risk associated with longer leaf retention in the autumn: in 1994, leaves in the warm chambers were killed by freezing temperatures before they had senesced. These observations support the premise that global warming could increase the length of the growing season. Phenological responses should, therefore, be part of any assessment of the possible consequences of global change, but our results also suggest that those responses may not always have positive effects on production.  相似文献   

11.
The timing of spring bud‐burst and leaf development in temperate, boreal and Arctic trees and shrubs fluctuates from year to year, depending on meteorological conditions. Over several generations, the sensitivity of bud‐burst to meteorological conditions is subject to selection pressure. The timing of spring bud‐burst is considered to be under opposing evolutionary pressures; earlier bud‐burst increases the available growing season (capacity adaptation) but later bud‐burst decreases the risk of frost damage to actively growing parts (survival adaptation). The optimum trade‐off between these two forms of adaptation may be considered an evolutionarily stable strategy that maximizes the long‐term ecological fitness of a phenotype under a given climate. Rapid changes in climate, as predicted for this century, are likely to exceed the rate at which trees and shrubs can adapt through evolution or migration. Therefore the response of spring phenology will depend not only on future climatic conditions but also on the limits imposed by adaptation to current and historical climate. Using a dataset of bud‐burst dates from twenty‐nine sites in Finland for downy birch (Betula pubescens Ehrh.), we parameterize a simple thermal time bud‐burst model in which the critical temperature threshold for bud‐burst is a function of recent historical climatic conditions and reflects a trade‐off between capacity and survival adaptation. We validate this approach with independent data from eight independent sites outside Finland, and use the parameterized model to predict the response of bud‐burst to future climate scenarios in north‐west Europe. Current strategies for budburst are predicted to be suboptimal for future climates, with bud‐burst generally occurring earlier than the optimal strategy. Nevertheless, exposure to frost risk is predicted to decrease slightly and the growing season is predicted to increase considerably across most of the region. However, in high‐altitude maritime regions exposure to frost risk following bud‐burst is predicted to increase.  相似文献   

12.
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate‐resolution imaging spectro‐radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape‐induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape‐induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change.  相似文献   

13.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

14.
Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood.Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence.Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study.Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes.  相似文献   

15.
Impact of climate change on plant phenology in Mediterranean ecosystems   总被引:1,自引:0,他引:1  
Plant phenology is strongly controlled by climate and has consequently become one of the most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000 records for six phenological events of 29 perennial plant species monitored from 1943 to 2003 for a comprehensive assessment of plant phenological responses to climate change in the Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were studied together during a complete annual cycle before phenological events to determine their relative importance and potential seasonal carry‐over effects. Warm and dry springs under a positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the growing season. Spatial variability of dates (range among sites) was also reduced during warm and dry years, especially for spring events. Climate during previous weeks to phenophases occurrence had the greatest impact on plants, although all events were also affected by climate conditions several months before. Immediate along with delayed climate effects suggest dual triggers in plant phenology. Climatic models accounted for more than 80% of variability in flowering and leaf unfolding dates, and in length of the growing season, but for lower proportions in fruiting and leaf falling. Most part of year‐to‐year changes in dates was accounted for temperature, while precipitation and NAO accounted for <10% of dates' variability. In the case of flowering, insect‐pollinated species were better modelled by climate than wind‐pollinated species. Differences in temporal responses of plant phenology to recent climate change are due to differences in the sensitivity to climate among events and species. Spring events are changing more than autumn events as they are more sensitive to climate and are also undergoing the greatest alterations of climate relative to other seasons. In conclusion, climate change has shifted plant phenology in the Mediterranean region.  相似文献   

16.
  1. Understanding the implications of climate change for migratory animals is paramount for establishing how best to conserve them. A large body of evidence suggests that birds are migrating earlier in response to rising temperatures, but many studies focus on single populations of model species.
  2. Migratory patterns at large spatial scales may differ from those occurring in single populations, for example because of individuals dispersing outside of study areas. Furthermore, understanding phenological trends across species is vital because we need a holistic understanding of how climate change affects wildlife, especially as rates of temperature change vary globally.
  3. The life cycles of migratory wading birds cover vast latitudinal gradients, making them particularly susceptible to climate change and, therefore, ideal model organisms for understanding its effects. Here, we implement a novel application of changepoint detection analysis to investigate changes in the timing of migration in waders at a flyway scale using a thirteen‐year citizen science dataset (eBird) and determine the influence of changes in weather conditions on large‐scale migratory patterns.
  4. In contrast to most previous research, our results suggest that migration is getting later in both spring and autumn. We show that rates of change were faster in spring than autumn in both the Afro‐Palearctic and Nearctic flyways, but that weather conditions in autumn, not in spring, predicted temporal changes in the corresponding season. Birds migrated earlier in autumn when temperatures increased rapidly, and later with increasing headwinds.
  5. One possible explanation for our results is that migration is becoming later due to northward range shifts, which means that a higher proportion of birds travel greater distances and therefore take longer to reach their destinations. Our findings underline the importance of considering spatial scale when investigating changes in the phenology of migratory bird species.
  相似文献   

17.
Shifts in phenology are a well‐documented ecological response to changes in climate, which may or may not be adaptive for a species depending on the climate sensitivity of other ecosystem processes. Furthermore, phenology may be affected by factors in addition to climate, which may accentuate or dampen climate‐driven phenological responses. In this study, we investigate how climate and population demographic structure jointly affect spawning phenology of a fish species of major commercial importance: walleye pollock (Gadus chalcogrammus). We use 32 years of data from ichthyoplankton surveys to reconstruct timing of pollock reproduction in the Gulf of Alaska and find that the mean date of spawning has varied by over 3 weeks throughout the last >3 decades. Climate clearly drives variation in spawn timing, with warmer temperatures leading to an earlier and more protracted spawning period, consistent with expectations of advanced spring phenology under warming. However, the effects of temperature were nonlinear, such that additional warming above a threshold value had no additional effect on phenology. Population demographics were equally as important as temperature: An older and more age‐diverse spawning stock tended to spawn earlier and over a longer duration than a younger stock. Our models suggest that demographic shifts associated with sustainable harvest rates could shift the mean spawning date 7 days later and shorten the spawning season by 9 days relative to an unfished population, independent of thermal conditions. Projections under climate change suggest that spawn timing will become more stable for walleye pollock in the future, but it is unknown what the consequences of this stabilization will be for the synchrony of first‐feeding larvae with production of zooplankton prey in spring. With ongoing warming in the world’s oceans, knowledge of the mechanisms underlying reproductive phenology can improve our ability to monitor and manage species under changing climate conditions.  相似文献   

18.
Recent climate changes have had distinct impacts on plant development in many parts of the world. Higher air temperatures, mainly since the end of the 1980s, have led to advanced timing of phenological phases and consequently to an extension of the general growing season. For this reason it is interesting to know how plants will respond to future climate change. In this study simple phenological models have been developed to estimate the impact of climate change on the natural vegetation in Saxony. The estimations are based on a regional climate scenario for the state of Saxony. The results indicate that changes in the timing of phenophases could continue in the future. Due to distinct temperature changes in winter and in summer, mainly the spring and summer phases will be advanced. Spring phenophases, such as leafing or flowering, show the strongest trends. Depending on the species, the average timing of these phenophases could be advanced by 3–27 days by 2050. Phenophases in autumn show relatively small changes. Thus, the annual growth period of individual trees will be further extended, mainly because of the shift of spring phases. Frequent droughts in summer and in autumn can compensate for the earlier leafing of trees, because in this case leaf colouring and leaf fall would start some weeks earlier. In such cases, the growing period would not be really extended, but shifted to the beginning of the year.  相似文献   

19.
Eriophorum vaginatum is a tussock‐forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is short in the Arctic and therefore exerts a strong selection pressure on tundra species. This raises the hypothesis that the phenology of arctic species may be poorly adapted if the timing and length of the growing season change. Mature E. vaginatum tussocks from across a latitudinal gradient (65–70°N) were transplanted into a common garden at a central location (Toolik Lake, 68°38′N, 149°36′W) where half were warmed using open‐top chambers. Over two growing seasons (2015 and 2016), leaf length was measured weekly to track growth rates, timing of senescence, and biomass accumulation. Growth rates were similar across ecotypes and between years and were not affected by warming. However, southern populations accumulated significantly more biomass, largely because they started to senesce later. In 2016, peak biomass and senescence of most populations occurred later than in 2015, probably induced by colder weather at the beginning of the growing season in 2016, which caused a delayed start to growth. The finish was delayed as well. Differences in phenology between populations were largely retained between years, suggesting that the amount of time that these ecotypes grow has been selected by the length of the growing seasons at their respective home sites. As potential growing seasons lengthen, E. vaginatum may be unable to respond appropriately as a result of genetic control and may have reduced fitness in the rapidly warming Arctic tundra.  相似文献   

20.
The phenology of diameter‐growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed‐source climate on diameter‐growth‐cessation timing in coast Douglas‐fir (an ecologically and economically vital tree) using high‐frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas‐fir to extend its growing season in response to climate change in the warm parts of its range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号