首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Productivity in boreal ecosystems is primarily limited by available soil nitrogen (N), and there is substantial interest in understanding whether deposition of anthropogenically derived reactive nitrogen (Nr) results in greater N availability to woody vegetation, which could result in greater carbon (C) sequestration. One factor that may limit the acquisition of Nr by woody plants is the presence of bryophytes, which are a significant C and N pool, and a location where associative cyanobacterial N‐fixation occurs. Using a replicated stand‐scale N‐addition experiment (five levels: 0, 3, 6, 12, and 50 kg N ha?1 yr?1; n=6) in the boreal zone of northern Sweden, we tested the hypothesis that sequestration of Nr into bryophyte tissues, and downregulation of N‐fixation would attenuate Nr inputs, and thereby limit anthropogenic Nr acquisition by woody plants. Our data showed that N‐fixation per unit moss mass and per unit area sharply decreased with increasing N addition. Additionally, the tissue N concentrations of Pleuorzium schreberi increased and its biomass decreased with increasing N addition. This response to increasing N addition caused the P. schreberi N pool to be stable at all but the highest N addition rate, where it significantly decreased. The combined effects of changed N‐fixation and P. schreberi biomass N accounted for 56.7% of cumulative Nr additions at the lowest Nr addition rate, but only a minor fraction for all other treatments. This ‘bryophyte effect’ can in part explain why soil inorganic N availability and acquisition by woody plants (indicated by their δ15N signatures) remained unchanged up to N addition rates of 12 kg ha?1 yr?1 or greater. Finally, we demonstrate that approximately 71.8% of the boreal forest experiences Nr deposition rates at or below 3 kg ha?1 yr?1, suggesting that bryophytes likely limit woody plant acquisition of ambient anthropogenic Nr inputs throughout a majority of the boreal forest.  相似文献   

2.
Nitrogen (N) added through atmospheric deposition or as fertilizer to boreal and temperate forests reduces both soil decomposer activity (heterotrophic respiration) and the activity of roots and mycorrhizal fungi (autotrophic respiration). However, these negative effects have been found in studies that applied relatively high levels of N, whereas the responses to ambient atmospheric N deposition rates are still not clear. Here, we compared an unfertilized control boreal forest with a fertilized forest (100 kg N ha?1 yr?1) and a forest subject to N‐deposition rates comparable to those in Central Europe (20 kg N ha?1 yr?1) to investigate the effects of N addition rate on different components of forest floor respiration and the production of ectomycorrhizal fungal sporocarps. Soil collars were used to partition heterotrophic (Rh) and autotrophic (Ra) respiration, which was further separated into respiration by tree roots (Rtr) and mycorrhizal hyphae (Rm). Total forest floor respiration was twice as high in the low N plot compared to the control, whereas there were no differences between the control and high N plot. There were no differences in Rh respiration among plots. The enhanced forest floor respiration in the low N plot was, therefore, the result of increased Ra respiration, with an increase in Rtr respiration, and a doubling of Rm respiration. The latter was corroborated by a slightly greater ectomycorrhizal (EM) fungal sporocarp production in the low N plot as compared to the control plot. In contrast, EM fungal sporocarp production was nearly eliminated, and Rm respiration severely reduced, in the high N plot, which resulted in significantly lower Ra respiration. We thus found a nonlinear response of the Ra components to N addition rate, which calls for further studies of the quantitative relations among N addition rate, plant photosynthesis and carbon allocation, and the function of EM fungi.  相似文献   

3.
It is proposed that increases in anthropogenic reactive nitrogen (Nr) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long‐term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long‐term (14‐year) stand‐scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha−1 yr−1) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low‐level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A 15N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg−1 N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition.  相似文献   

4.
Although Miscanthus sinensis grasslands (Misc‐GL) and Cryptomeria japonica forest plantations (Cryp‐FP) are proposed bioenergy feedstock systems, their relative capacity to sequester C may be an important factor in determining their potential for sustainable bioenergy production. Therefore, our objective was to quantify changes in soil C sequestration 47 years after a Misc‐GL was converted to a Cryp‐FP. The study was conducted on adjacent Misc‐GL and Cryp‐FP located on Mt. Aso, Kumamoto, Japan. After Cryp‐FP establishment, only the Misc‐GL continued to be managed by annual burning every March. Mass C and N, δ13C, and δ15N at 0–30 cm depth were measured in 5 cm increments. Carbon and N concentrations, C:N ratio, δ13C, and δ15N were measured in litter and/or ash, and rhizomes or roots. Although C input in Misc‐GL by M. sinensis was approximately 36% of that in Cryp‐FP by C. japonica, mean annual soil C sequestration in Misc‐GL (503 kg C ha?1 yr?1) was higher than that in Cryp‐FP (284 kg C ha?1 yr?1). This was likely the result of larger C input from aboveground litter to soil, C‐quality (C:N ratio and lignin concentration in aboveground litter) and possibly more recalcitrant C (charcoal) inputs by annual burning. The difference in soil δ15N between sites indicated that organic C with N had greater cycling between heterotrophic microbes and soil and produces more recalcitrant humus in Misc‐GL than in Cryp‐FP. Our data indicate that in terms of soil C sequestration, maintenance of Misc‐GL may be more advantageous than conversion to Cryp‐FP in Aso, Japan.  相似文献   

5.
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g?1‐C compared to the control (0.24–1.86 mg‐CO2–C g?1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (?10.22 to ?23.56 mg‐CO2–C g?1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g?1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g?1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles.  相似文献   

6.
Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.  相似文献   

7.
The mechanistic understanding of warming and nitrogen (N) fertilization, alone or in combination, on microbially mediated decomposition is limited. In this study, soil samples were collected from previously harvested switchgrass (Panicum virgatum L.) plots that had been treated with high N fertilizer (HN: 67 kg N ha?1) and those that had received no N fertilizer (NN) over a 3‐year period. The samples were incubated for 180 days at 15 °C and 20 °C, during which heterotrophic respiration, δ13C of CO2, microbial biomass (MB), specific soil respiration rate (Rs: respiration per unit of microbial biomass), and exoenzyme activities were quantified at 10 different collections time. Employing switchgrass tissues (referred to as litter) with naturally abundant 13C allowed us to partition CO2 respiration derived from soil and amended litter. Cumulative soil respiration increased significantly by 16.4% and 4.2% under warming and N fertilization, respectively. Respiration derived from soil was elevated significantly with warming, while oxidase, the agent for recalcitrant soil substrate decomposition, was not significantly affected by warming. Warming, however, significantly enhanced MB and Rs indicating a decrease in microbial growth efficiency (MGE). On the contrary, respiration derived from amended litter was elevated with N fertilization, which was consistent with the significantly elevated hydrolase. N fertilization, however, had little effect on MB and Rs, suggesting little change in microbial physiology. Temperature and N fertilization showed minimal interactive effects likely due to little differences in soil N availability between NN and HN samples, which is partly attributable to switchgrass biomass N accumulation (equivalent to ~53% of fertilizer N). Overall, the differential individual effects of warming and N fertilization may be driven by physiological adaptation and stimulated exoenzyme kinetics, respectively. The study shed insights on distinct microbial acquisition of different substrates under global temperature increase and N enrichment.  相似文献   

8.
Wildfires release substantial quantities of carbon (C) into the atmosphere but they also convert part of the burnt biomass into pyrogenic organic matter (PyOM). This is richer in C and, overall, more resistant to environmental degradation than the original biomass, and, therefore, PyOM production is an efficient mechanism for C sequestration. The magnitude of this C sink, however, remains poorly quantified, and current production estimates, which suggest that ~1‐5% of the C affected by fire is converted to PyOM, are based on incomplete inventories. Here, we quantify, for the first time, the complete range of PyOM components found in‐situ immediately after a typical boreal forest fire. We utilized an experimental high‐intensity crown fire in a jack pine forest (Pinus banksiana) and carried out a detailed pre‐ and postfire inventory and quantification of all fuel components, and the PyOM (i.e., all visually charred, blackened materials) produced in each of them. Our results show that, overall, 27.6% of the C affected by fire was retained in PyOM (4.8 ± 0.8 t C ha?1), rather than emitted to the atmosphere (12.6 ± 4.5 t C ha?1). The conversion rates varied substantially between fuel components. For down wood and bark, over half of the C affected was converted to PyOM, whereas for forest floor it was only one quarter, and less than a tenth for needles. If the overall conversion rate found here were applicable to boreal wildfire in general, it would translate into a PyOM production of ~100 Tg C yr?1 by wildfire in the global boreal regions, more than five times the amount estimated previously. Our findings suggest that PyOM production from boreal wildfires, and potentially also from other fire‐prone ecosystems, may have been underestimated and that its quantitative importance as a C sink warrants its inclusion in the global C budget estimates.  相似文献   

9.
Temperate forest 15N isotope trace experiments find nitrogen (N) addition‐driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply 15N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional 15N additions typically trace mineral 15N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/15N ha?1 yr?1 to Sitka spruce saplings. We compared tree and soil 15N recovery among treatments where enrichment was due to either (1) a 15N‐enriched litter layer, or mineral 15N additions to (2) the soil or (3) the canopy. We found that 60% of 15N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of 15N applied to the soil was found in these pools. 15N recovery from litter was low and highly variable. 15N partitioning among biomass pools and age classes also differed among treatments, with twice as much 15N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from 15N applied to the soil, scaled to real‐world conditions, was 43 kg C kg N?1, similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N?1. Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies.  相似文献   

10.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

11.
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest‐steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha?1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha?1) and total belowground carbon density (149 Mg C ha?1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha?1, compared with 215 Mg C ha?1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha?1. Analysis of satellite imagery of the highly fragmented forest area in the forest‐steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5?1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.  相似文献   

12.
Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well‐informed, land‐use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km2 (767–937 m asl.) from the surface down to the k‐Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using 14C dating) and δ13C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C‐sequestration rates. The mean total C stock of all six sites was 232 Mg C ha?1 (28–417 Mg C ha?1), which equates to a soil C sequestration rate of 32 kg C ha?1 yr?1 over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha?1 yr?1, respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ13C abundance. We conclude that the seminatural, C4‐dominated grassland system serves as an important C sink, and worthy of future conservation.  相似文献   

13.
Aim The aim of this work was to estimate C sequestration rates in the organic matter layer in Swedish forests. Location The region encompassed the forested area (23 × 106 ha) of Sweden ranging from about 55° N to 69° N. Methods We used the concept of limit values to estimate recalcitrant litter remains, and combined it with amount of litter fall. Four groups of tree species were identified (pine, spruce, birch and ‘other deciduous species’). Annual actual evapotranspiration (AET) was estimated for 5 × 5 km grids covering Sweden. For each grid, data of forested area and main species composition were available. The annual input of foliar litter into each grid was calculated using empirical relationships between AET and foliar litter fall in the four groups. Litter input was combined with average limit values for decomposition for the four groups of litter, based on empirical data. Finally, C sequestration rate was calculated using a constant factor of the C concentration in the litter decomposed to the limit value, thus forming soil organic matter (SOM). Results We obtained a value of 4.8 × 106 metric tons of C annually sequestered in SOM in soils of mature forests in Sweden, with an average of 180 kg ha?1 and a range from 40 to 410 kg ha?1. Norway spruce forests accumulated annually an average of 200 kg C ha?1. The pine and birch groups had an average of 150 kg ha?1 and for the group of other deciduous trees, which is limited to south Sweden, the C sequestration was around 400 kg ha?1. Conclusions There is a clear C sequestration gradient over Sweden with the highest C sequestration in the south‐west, mainly corresponding to the gradient in litter fall. The limit‐value method appears useful for scaling up to a regional level to describe the C sequestration in SOM. A development of the limit value approach in combination with process‐orientated dynamic models may have a predictive value.  相似文献   

14.
随着全球大气氮沉降的明显增加,将有可能显著影响我国西部地区受氮限制的亚高山森林生态系统。土壤微生物是生态系统的重要组成部分,是土壤物质循环和能量流动的重要参与者。由于生态系统类型、土壤养分、氮沉降背景值等的差异,土壤呼吸和土壤生物量碳氮对施氮的响应存在许多不确定性。而施氮会不会促进亚高山森林生态系统中土壤呼吸和微生物对土壤碳氮的固定?基于此假设,选择了川西60年生的四川红杉(Larix mastersiana)亚高山针叶林为研究对象,通过4个水平的土壤施氮控制试验(CK:0 g m~(-2) a~(-1)、N1:2 g m~(-2)a~(-1)、N2:5 g m~(-2) a~(-1)、N3:10 g m~(-2)a~(-1)),监测了土壤呼吸及土壤微生物生物量碳氮在一个生长季的动态情况。结果表明:施氮对土壤呼吸各指标和土壤微生物碳氮都有极显著的影响,施氮能促进土壤全呼吸、自养呼吸、异养呼吸通量和土壤微生物生物量碳氮的增长,施氮使土壤呼吸通量提高了11%—15%,土壤微生物量碳提高了5%—9%,土壤微生物量氮提高了23%—34%。在中氮水平下(5 g m~(-2) a~(-1))对土壤呼吸的促进最显著。相关分析发现,土壤呼吸与微生物生物量碳氮和微生物代谢商极呈显著正相关,微生物量碳氮与土壤温度呈极显著的正相关,与土壤湿度呈极显著负相关。通过一般线性回归拟合土壤呼吸速率与土壤10 cm温湿度的关系,发现土壤呼吸速率与土壤温度呈极显著的正相关,与土壤湿度极显著负相关(P0.001),中氮水平下土壤温度敏感性系数Q_(10)值(7.10)明显高于对照(4.26)。  相似文献   

15.
Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above‐ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space‐for‐time’ approach to test the hypothesis that a shift from lower‐productivity tundra heath to higher‐productivity deciduous shrub vegetation in the sub‐Arctic may lead to a loss of soil C that out‐weighs the increase in above‐ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m?2) and forest (2.04 ± 0.25 kg m?2) plots than at heath plots (7.03 ± 0.79 kg m?2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.  相似文献   

16.
Hydrothermal carbonization (HTC) has been proposed as an alternative method to pyrolysis for producing C‐rich amendments for soil C sequestration. However, the use of hydrochar (HC) as soil amendment is still controversial due to the limited information on the potential benefits and trade‐offs that may follow its application into soil. This study investigated the effects of HC starting from maize silage on plant growth in a 2‐year controlled experiment on poplar for bioenergy and evaluated HC stability in soil by periodic soil respiration and isotopic (δ13C) measurements. HC application caused a substantial and significant increase in plant biomass after one and two years after planting, and no evident signs of plant diseases were evident. Isotopic analysis on soil and CO2 efflux showed that slightly less than half of the C applied was re‐emitted as CO2 within 12 months. On the contrary, considering that the difference in the amount of N fixed in wood biomass in treated and not‐treated poplars was 16.6 ± 4.8 g N m?2 and that the soil N stocks after one year since application did not significantly change, we estimated that approximately 85% of the N applied with HC could have been potentially lost as leachate or volatilized into the atmosphere as N2O, in response to nitrification/denitrification processes in the soil. Thus, the permanence, additionality and leakage of C sequestration strategy using HC are deeply discussed.  相似文献   

17.
Intercropping enhances soil carbon and nitrogen   总被引:14,自引:0,他引:14       下载免费PDF全文
Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha?1 yr?1. Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha?1 yr?1. Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ15N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.  相似文献   

18.
This study was set up to identify the long‐term effect of biochar on soil C sequestration of recent carbon inputs. Arable fields (n = 5) were found in Belgium with charcoal‐enriched black spots (>50 m2; n = 14) dating >150 years ago from historical charcoal production mound kilns. Topsoils from these ‘black spots’ had a higher organic C concentration [3.6 ± 0.9% organic carbon (OC)] than adjacent soils outside these black spots (2.1 ± 0.2% OC). The soils had been cropped with maize for at least 12 years which provided a continuous input of C with a C isotope signature (δ13C) ?13.1, distinct from the δ13C of soil organic carbon (?27.4 ‰) and charcoal (?25.7 ‰) collected in the surrounding area. The isotope signatures in the soil revealed that maize‐derived C concentration was significantly higher in charcoal‐amended samples (‘black spots’) than in adjacent unamended ones (0.44% vs. 0.31%; = 0.02). Topsoils were subsequently collected as a gradient across two ‘black spots’ along with corresponding adjacent soils outside these black spots and soil respiration, and physical soil fractionation was conducted. Total soil respiration (130 days) was unaffected by charcoal, but the maize‐derived C respiration per unit maize‐derived OC in soil significantly decreased about half (< 0.02) with increasing charcoal‐derived C in soil. Maize‐derived C was proportionally present more in protected soil aggregates in the presence of charcoal. The lower specific mineralization and increased C sequestration of recent C with charcoal are attributed to a combination of physical protection, C saturation of microbial communities and, potentially, slightly higher annual primary production. Overall, this study provides evidence of the capacity of biochar to enhance C sequestration in soils through reduced C turnover on the long term.  相似文献   

19.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

20.
We studied forest monitoring data collected at permanent plots in Italy over the period 2000–2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N‐NO3+N‐NH4) ranged between 4 and 29 kg ha?1 yr?1, with Critical Loads (CLs) for nutrient N exceeded at several sites. Evidence is consistent in pointing out effects of N deposition on soil and tree nutrition: topsoil exchangeable base cations (BCE) and pH decreased with increasing N deposition, and foliar nutrient N ratios (especially N : P and N : K) increased. Comparison between bulk openfield and throughfall data suggested possible canopy uptake of N, levelling out for bulk deposition >4–6 kg ha?1 yr?1. Partial Least Square (PLS) regression revealed that ‐ although stand and meteorological variables explained the largest portion of variance in relative basal area increment (BAIrel 2000–2009) ‐ N‐related predictors (topsoil BCE, C : N, pH; foliar N‐ratios; N deposition) nearly always improved the BAIrel model in terms of variance explained (from 78.2 to 93.5%) and error (from 2.98 to 1.50%). N deposition was the strongest predictor even when stand, management and atmosphere‐related variables (meteorology and tropospheric ozone) were accounted for. The maximal annual response of BAIrel was estimated at 0.074–0.085% for every additional kgN. This corresponds to an annual maximal relative increase of 0.13–0.14% of carbon sequestered in the above‐ground woody biomass for every additional kgN, i.e. a median value of 159 kgC per kgN ha?1 yr?1 (range: 50–504 kgC per kgN, depending on the site). Positive growth response occurred also at sites where signals of possible, perhaps recent N saturation were detected. This may suggest a time lag for detrimental N effects, but also that, under continuous high N input, the reported positive growth response may be not sustainable in the long‐term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号