首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of femoral component malrotation on patellar biomechanics   总被引:1,自引:0,他引:1  
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components and may, therefore, reduce any associated patellofemoral maltracking. To test this hypothesis, we developed a dynamic model of quadriceps-driven open-kinetic-chain extension in a knee implanted with arthroplasty components. The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees. Knee kinematics and patellofemoral forces were measured after simulating malrotation (±3°) of the femoral component. Rotational alignment of the femoral component affected tibial rotation near full extension and tibial adduction at higher flexion angles. External rotation of the femoral component increased patellofemoral lateral tilt, lateral shift, and lateral shear forces. Up to 21° of bearing rotation relative to the tibia was noted in the rotating-bearing condition. However, the rotating bearing had minimal effect in reducing the patellofemoral maltracking or shear induced by femoral component rotation. The rotating platform does not appear to be forgiving of malalignment of the extensor mechanism resulting from femoral component malrotation. These results support the value of improving existing methodologies for accurate femoral component alignment in total knee arthroplasty.  相似文献   

2.
The movement of the knee joint consists of a coupled motion between the tibiofemoral and patellofemoral articulations. This study measured the six degrees-of-freedom kinematics of the tibia, femur, and patella using dual-orthogonal fluoroscopy and magnetic resonance imaging. Ten normal knees from ten living subjects were investigated during weightbearing flexion from full extension to maximum flexion. The femoral and the patellar motions were measured relative to the tibia. The femur externally rotated by 12.9 deg and the patella tilted laterally by 16.3 deg during the full range of knee flexion. Knee flexion was strongly correlated with patellar flexion (R(2)=0.91), posterior femoral translation was strongly correlated to the posterior patellar translation (R(2)=0.87), and internal-external rotation of the femur was correlated to patellar tilt (R(2)=0.73) and medial-lateral patellar translation (R(2)=0.63). These data quantitatively indicate a kinematic coupling between the tibia, femur, and patella, and provide base line information on normal knee joint kinematics throughout the full range of weightbearing flexion. The data also suggest that the kinematic coupling of tibia, femur, and patella should be considered when investigating patellar pathologies and when developing surgical techniques to treat knee joint diseases.  相似文献   

3.
The purpose of this study was determine the amounts of rotation and displacement occurring in a relatively unconstrained condylar replacement knee, and to compare the motion with a matched group of normal knees. The motion was measured using an electromagnetic device, the 3-Space Tracker, for various common activities, for 25 normal volunteers and 25 total knee patients. The main variables studied were internal-external rotation of the tibia about its long axis and anterior-posterior displacement of the femoral origin with respect to the tibia, as a function of flexion angle or per cent of gait cycle. The motion of the total knees was very similar to that of the normals. For sitting, standing and free-swing, the knee rotated internally by 5–10° and the femur displaced posteriorly by 9–14 mm, as the knee was flexed from 0 to 90°. For walking and going upstairs and downstairs the absolute values of the rotations and displacements were similar to the above. However, the mean values of rotation were less due to greater variation in the rotation patterns, due probably to the increased laxity of the knee during the swing phases. From these data, taking the mean motions and one standard deviation (S.D.), it is suggested that a knee prosthesis should allow a rotation from minus to plus 12° (a total range of 24°) and an anterior-posterior displacement of 13 mm. It is suggested that these motions be subject to progressive restraint from the neutral position in the manner of the natural knee.  相似文献   

4.
Motion of the knee after condylar resurfacing--an in vivo study.   总被引:3,自引:0,他引:3  
The purpose of this study was determine the amounts of rotation and displacement occurring in a relatively unconstrained condylar replacement knee, and to compare the motion with a matched group of normal knees. The motion was measured using an electromagnetic device, the 3-Space Tracker, for various common activities, for 25 normal volunteers and 25 total knee patients. The main variables studied were internal-external rotation of the tibia about its long axis and anterior-posterior displacement of the femoral origin with respect to the tibia, as a function of flexion angle or per cent of gait cycle. The motion of the total knees was very similar to that of the normals. For sitting, standing and free-swing, the knee rotated internally by 5-10 degrees and the femur displaced posteriorly by 9-14 mm, as the knee was flexed from 0 to 90 degrees. For walking and going upstairs and downstairs the absolute values of the rotations and displacements were similar to the above. However, the mean values of rotation were less due to greater variation in the rotation patterns, due probably to the increased laxity of the knee during the swing phases. From these data, taking the mean motions and one standard deviation (S.D.), it is suggested that a knee prosthesis should allow a rotation from minus to plus 12 degrees (a total range of 24 degrees) and an anterior-posterior displacement of 13 mm. It is suggested that these motions be subject to progressive restraint from the neutral position in the manner of the natural knee.  相似文献   

5.
The objective of the current study was to use fluoroscopy to accurately determine the three-dimensional (3D), in vivo, weight-bearing kinematics of 10 normal and five anterior cruciate ligament deficient (ACLD) knees. Patient-specific bone models were derived from computed tomography (CT) data. 3D computer bone models of each subject's femur, tibia, and fibula were recreated from the CT 3D bone density data. Using a model-based 3D-to-2D imaging technique registered CT images were precisely fit onto fluoroscopic images, the full six degrees of freedom motion of the bones was measured from the images. The computer-generated 3D models of each subject's femur and tibia were precisely registered to the 2D digital fluoroscopic images using an optimization algorithm that automatically adjusts the pose of the model at various flexion/extension angles. Each subject performed a weight-bearing deep knee bend while under dynamic fluoroscopic surveillance. All 10 normal knees experienced posterior femoral translation of the lateral condyle and minimal change in position of the medial condyle with progressive knee flexion. The average amount of posterior femoral translation of the lateral condyle was 21.07 mm, whereas the average medial condyle translation was 1.94 mm, in the posterior direction. In contrast, all five ACLD knees experienced considerable change in the position of the medial condyle. The average amount of posterior femoral translation of the lateral condyle was 17.00 mm, while the medial condyle translation was 4.65 mm, in the posterior direction. In addition, the helical axis of motion was determined between maximum flexion and extension. A considerable difference was found between the center of rotation locations of the normal and ACLD subjects, with ACLD subjects exhibiting substantially higher variance in kinematic patterns.  相似文献   

6.
Few in-vitro studies have investigated changes in kinematics caused by total knee replacement (TKR) implantation. The advent of surgical navigation systems allows implant position to be measured accurately and the effects of alteration of TKR position and alignment investigated. A test rig and protocol were developed to compare the kinematics of TKR-implanted knees for different femoral component positions. The TKR was implanted and the component positions documented using a navigation system. The quadriceps was tensed and the knees were flexed and extended manually. Torques and drawer forces were applied to the tibia during knee flexion–extension, while recording the kinematics with the navigation system. The implant was removed and replaced on an intramedullary fixation that allowed proximal–distal, and internal–external rotation of the femoral component without conducting a repeated arthrotomy on the knee. The implant was repositioned using the navigation system to reproduce the previously achieved normally navigated position and the kinematics were recorded again. The recorded kinematics of the knee were not significantly different between both normal implantation and intramedullary remounting for tibial internal–external rotation, varus–valgus angulation, or posterior drawer, at any angle of knee flexion examined. Anterior drawer was increased approximately 2.5 mm across the range 20–35° knee flexion (p<0.05), but was otherwise not significantly different. This method of navigating implant components and of moving them within the closed knee (thus avoiding artefactual effects of repeated soft tissue manipulations) can now be used to quantify the effect on kinematics of alteration of the position of the femoral component.  相似文献   

7.
The aim of this study was to image tibio-femoral movement during flexion in the living knee. Ten loaded male Caucasian knees were initially studied using MRI, and the relative tibio-femoral motions, through the full flexion arc in neutral tibial rotation, were measured. On knee flexion from hyperextension to 120 degrees , the lateral femoral condyle moved posteriorly 22 mm. From 120 degrees to full squatting there was another 10 mm of posterior translation, with the lateral femoral condyle appearing almost to sublux posteriorly. The medial femoral condyle demonstrated minimal posterior translation until 120 degrees . Thereafter, it moved 9 mm posteriorly to lie on the superior surface of the medial meniscal posterior horn. Thus, during flexion of the knee to 120 degrees , the femur rotated externally through an angle of 20 degrees . However, on flexion beyond 120 degrees , both femoral condyles moved posteriorly to a similar degree. The second part of this study investigated the effect of gender, side, load and longitudinal rotation. The pattern of relative tibio-femoral movement during knee flexion appears to be independent of gender and side. Femoral external rotation (or tibial internal rotation) occurs with knee flexion under loaded and unloaded conditions, but the magnitude of rotation is greater and occurs earlier on weight bearing. With flexion plus tibial internal rotation, the pattern of movement follows that in neutral. With flexion in tibial external rotation, the lateral femoral condyle adopts a more anterior position relative to the tibia and, particularly in the non-weight bearing knee, much of the femoral external rotation that occurs with flexion is reversed.  相似文献   

8.
Rationale and Objectives. To reduce tibio-femoral misalignment, the polyethylene bearing-component of a new knee prosthesis was allowed limited motion on the underlying metallic component. The object of the work presented here was to develop a suitable radiographic technique for quantifying the in-vivo position of the bearing. By collecting these data at discrete flexion angles, the functional operation of the prosthesis could be determined. Methods. The known geometries between landmarks on the two components were used to produce algorithms for reconstructing their spatial positions from a single radiograph. A custom-designed computer program utilized these algorithms to determine the relative translation and rotation of the polyethylene component. Results. This technique produced typical errors of 0.54 mm translation and 0.56 degrees rotation between the polyethylene component and the underlying metallic component. Conclusions. A practical method has been developed for assessing mobile-bearing motion, in vivo. This method can be applied to other prosthetic devices, or combinations of components, once the requirement for identifiable landmarks has been addressed. Clinical Relevance. Skeletal and soft-tissue changes in the pathological knee may produce abnormal rotations and translations in the transverse tibial plane. This technique is intended both to validate the design philosophy of a mobile-bearing prosthesis and to provide additional data on any pathological motions, which will have implications for future prosthetic designs.  相似文献   

9.
A new device and method to measure rabbit knee joint angles are described. The method was used to measure rabbit knee joint angles in normal specimens and in knee joints with obvious contractures. The custom-designed and manufactured gripping device has two clamps. The femoral clamp sits on a pinion gear that is driven by a rack attached to a materials testing system. A 100 N load cell in series with the rack gives force feedback. The tibial clamp is attached to a rotatory potentiometer. The system allows the knee joint multiple degrees-of-freedom (DOF). There are two independent DOF (compression-distraction and internal-external rotation) and two coupled motions (medial-lateral translation coupled with varus-valgus rotation; anterior-posterior translation coupled with flexion-extension rotation). Knee joint extension-flexion motion is measured, which is a combination of the materials testing system displacement (converted to degrees of motion) and the potentiometer values (calibrated to degrees). Internal frictional forces were determined to be at maximum 2% of measured loading. Two separate experiments were performed to evaluate rabbit knees. First, normal right and left pairs of knees from four New Zealand White (NZW) rabbits were subjected to cyclic loading. An extension torque of 0.2 Nm was applied to each knee. The average change in knee joint extension from the first to the fifth cycle was 1.9 deg +/- 1.5 deg (mean +/- sd) with a total of 49 tests of these eight knees. The maximum extension of the four left knees (tested 23 times) was 14.6 deg +/- 7.1 deg, and of the four right knees (tested 26 times) was 12.0 deg +/- 10.9 deg. There was no significant difference in the maximum extension between normal left and right knees. In the second experiment, nine skeletally mature NZW rabbits had stable fractures of the femoral condyles of the right knee that were immobilized for five, six or 10 weeks. The left knee served as an unoperated control. Loss of knee joint extension (flexion contracture) was demonstrated for the experimental knees using the new methodology where the maximum extension was 35 deg +/- 9 deg, compared to the unoperated knee maximum extension of 11 deg +/- 7 deg, 10 or 12 weeks after the immobilization was discontinued. The custom gripping device coupled to a materials testing machine will serve as a measurement test for future studies characterizing a rabbit knee model of post-traumatic joint contractures.  相似文献   

10.
An automated image-matching technique is presented to assess alignment of the entire lower extremity for normal and implanted knees and the positioning of implants with respect to bone. Sawbone femur and tibia and femoral and tibial components of a total knee arthroplasty system were used. Three spherical markers were attached to each sawbone and each component to define the local coordinate system. Outlines of the three-dimensional (3D) bone models and component computer-aided design (CAD) models were projected onto extracted contours of the femur, tibia, and implants in frontal and oblique X-ray images. Three-dimensional position of each model was recovered by minimizing the difference between the projected outline and the contour. Median values of the absolute error in estimating relative positions were within 0.5 mm and 0.6° for the femur with respect to the tibia, 0.5 mm and 0.5° for the femoral component with respect to the tibial component, 0.6 mm and 0.6° for the femoral component with respect to the femur, and 0.5 mm and 0.4° for the tibial component with respect to the tibia, indicating significant improvements when compared to manually obtained results.  相似文献   

11.
Newer designs of total knee arthroplasty (TKA), through the use of added degrees of constraint, attempt to provide a "guided motion" to restore more normal and predictable kinematics. Two such design philosophies are the posterior stabilised (PS) using a cam-post and the medial pivot (MP) concepts. Knee kinematics of 12 patients with a PS TKA, 13 subjects with a MP TKA and 10 normal subjects were compared. For kinematic assessment, patients underwent fluoroscopic assessment of the knee during a step-up exercise and deep knee bend. Fluoroscopic images were corrected for distortion and assessed using 3D model fitting to determine relative 3D motion, and a 2D method to measure the patellar tendon angle (PTA) as function of knee flexion. For the PS design the cam-post mechanism engaged between 70 degrees and 100 degrees flexion. Between extension and 50 degrees there was forward motion of the contact points. Beyond 60 degrees both condyles rolled moved posteriorly. The majority of the external rotation of the femur occurred between 50 degrees and 80 degrees . The PTA was lower than normal in extension and higher than normal in flexion. The MP exhibited no anterior movement throughout the rage of motion. The medial condyle moved minimally. The lateral contact point moved posteriorly from extension to flexion. The femur rotated externally throughout the range of flexion analysed. The PTA was similar to normal from extension to mid flexion and then higher than normal beyond to high flexion. The PS design fails to fully restrain paradoxical anterior movement and although the cam engages, it does not contribute significantly to overall rollback. The MP knee does not show significant anterior movement, the medial pivot concept appears to achieve near normal kinematics from extension to 50 degrees of knee flexion. However, the results show that at high flexion this design does not achieve normal knee kinematics.  相似文献   

12.
We studied the kinematics of the knee during weight-bearing active extension in 14 patients with medial osteoarthrosis (OA) and in 10 controls using dynamic radiostereometry. Between 50 degrees and 20 degrees of extension the OA knees showed decreased internal tibial rotation corresponding to less posterior displacement of the lateral femoral flexion facet center. The midpoint between the two tips of the tibial intercondylar eminence occupied a more posterior position within the range of motion analyzed. The observed changes were similar to those previously recorded in chronic tear of the anterior cruciate ligament. Patients with medial arthrosis of the knee joint show a specific and abnormal pattern of joint motion.  相似文献   

13.
Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior–posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion–extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4±2.0 mm vs. 7.4±6.1 mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).  相似文献   

14.
Rationale and Objectives. To reduce tibio-femoral misalignment, the polyethylene bearing-component of a new knee prosthesis was allowed limited motion on the underlying metallic component. The object of the work presented here was to develop a suitable radiographic technique for quantifying the in-vivo position of the bearing. By collecting these data at discrete flexion angles, the functional operation of the prosthesis could be determined

Methods. The known geometries between landmarks on the two components were used to produce algorithms for reconstructing their spatial positions from a single radiograph. A custom-designed computer program utilized these algorithms to determine the relative translation and rotation of the polyethylene component

Results. This technique produced typical errors of 0.54 mm translation and 0.56° rotation between the polyethylene component and the underlying metallic component

Conclusions. A practical method has been developed for assessing mobile-bearing motion, in vivo. This method can be applied to other prosthetic devices, or combinations of components, once the requirement for identifiable landmarks has been addressedClinical Relevance. Skeletal and soft-tissue changes in the pathological knee may produce abnormal rotations and translations in the transverse tibial plane. This technique is intended both to validate the design philosophy of a mobile-bearing prosthesis and to provide additional data on any pathological motions, which will have implications for future prosthetic designs.  相似文献   

15.
Medio-lateral translation during knee flexion continues to raise controversy. Small population sizes, small joint flexion ranges, less-reliable measurement techniques and disparate experimental conditions led to inconsistent reports in the past. To study this subject with more accurate and reliable measurements, we carried out femur and tibia tracking in 22 intact cadaver knees during passive joint motion using a state-of-the-art surgical navigation system. Trackers with active light-emitting diodes were fixed onto the femur and tibia, and an instrumented pointer was used to digitize a number of anatomical landmarks. International recommendations were adopted for anatomical-based reference frame definitions and joint kinematic analysis. For the first time, knee joint translations were reported in both the femoral and tibial reference frames, and over a flexion/extension arc as large as 140°. During flexion, in the femoral reference frame, the center of the tibial plateau moved 4.8 ± 2.8mm medially when averaged over the specimens. In the tibial frame, the knee center moved 13.3 ± 5.7 mm laterally. The relative femoral-to-tibial medio-lateral translation was, on average over the specimens, nearly 20% of the width of the tibial plateau, and can be as large as 35%. Medio-lateral translation occurs in the natural normal knee joint.  相似文献   

16.
The knee is one of the most frequently injured joints in the human body. A recent study suggests that axial compressive loads on the knee may play a role in injury to the anterior cruciate ligament (ACL) for the flexed knee, because of an approximate 10 degrees posterior tilt in the tibial plateau (J. Orthop. Res. 16 (1998) 122-127). The hypothesis of the current study was that excessive axial compressive loads in the human tibio-femoral (TF) joint would cause relative displacement and rotation of the tibia with respect to the femur, and result in isolated injury to the ACL when the knee is flexed to 60 degrees , 90 degrees or 120 degrees . Sixteen isolated knees from eleven fresh cadaver donors (74.3+/-10.5 yr) were exposed to repetitive TF compressive loads increasing in intensity until catastrophic injury. ACL rupture was documented in 14/16 cases. The maximum TF joint compressive force for ACL failure was 5.1+/-2.1 kN for all flexion angles combined. For the 90 degrees flexed knee, the injury occurred with a relative anterior displacement of 5.4+/-3.8mm, a lateral displacement of 4.1+/-1.4mm, and a 7.8+/-7.0 degrees internal rotation of the tibia with respect to the femur.  相似文献   

17.
BackgroundWhile several studies describe kinematics of healthy and osteoarthritic knees using the accurate imaging and computer modelling now possible, no systematic review exists to synthesise these data.MethodA systematic review extracted quantitative observational, quasi-experimental and experimental studies from PubMed, Scopus, Medline and Web of Science that examined motion of the bony or articular surfaces of the tibiofemoral joint during any functional activity. Studies using surface markers, animals, and in vitro studies were excluded.Results352 studies were screened to include 23 studies. Dynamic kinematics were recorded for gait, step-up, kneeling, squat and lunge and quasi-static squat, knee flexion in side-lying or supine leg-press. Kinematics were described using a diverse range of measures including six degrees of freedom kinematics, contact patterns or the projection of the femoral condylar axis above the tibia. Meta-analysis of data was not possible since no three papers recorded the same activity with the same measures. Visual evaluation of data revealed that knees with osteoarthritis maintained a more adducted position and showed less posterior translation of the lateral femoral condylar axis than healthy knees. Variability in activities and in recording measures produced greater variation in kinematics, than did knee osteoarthritis.ConclusionDifferences in kinematics between osteoarthritic and healthy knees were observed, however, these differences were more subtle than expected. The synthesis and progress of this research could be facilitated by a consensus on reference systems for axes and kinematic reporting.  相似文献   

18.
Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1 mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22 mm±±0.36 mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by −0.20 mm±±0.29 mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be determined reliably by single plane fluoroscopy analysis.  相似文献   

19.
Moment arm of the patellar tendon in the human knee   总被引:5,自引:0,他引:5  
The moment arm of the knee-extensor mechanism is described by the moment arm of the patellar tendon calculated with respect to the screw axis of the tibia relative to the femur. The moment arm may be found once the line of action of the patellar tendon and the position and orientation of the screw axis are known. In this study, the orientation of the patellar tendon and the position and orientation of the finite screw axis of the tibia relative to the femur were calculated from measurements of the three-dimensional positions of the bones obtained from fresh cadaver specimens. Peak values of the patellar tendon moment arm ranged from 4-6 cm for the six knees tested; the moment arm was maximum near 45 degrees of knee flexion. The moment arm of the patellar tendon was nearly equal to the shortest (perpendicular) distance between the line of action of the patellar tendon and the axis of rotation of the knee at all flexion angles, except near full extension. Near full extension, the angle between the patellar tendon and the screw axis was significantly less than 90 degrees, and the magnitude of the moment arm was then less than the perpendicular distance between these two lines. The patellar tendon moment arm remained roughly constant across individuals when normalized by femoral condyle width, suggesting that anatomical differences play a large role in determining the moment arm of the extensor mechanism.  相似文献   

20.
The accurate measurement of the in vivo knee joint kinematics in six degrees-of-freedom (6DOF) remains a challenge in biomedical engineering. We have adapted a dual fluoroscopic imaging system (DFIS) to investigate the various in vivo dynamic knee joint motions. This paper presents a thorough validation of the accuracy and repeatability of the DFIS system when used to measure 6DOF dynamic knee kinematics. First, the validation utilized standard geometric spheres made from different materials to demonstrate the capability of the DFIS technique to determine the object positions under changing speeds. The translational pose of the spheres could be recreated to less than 0.15±0.09 mm for velocities below 300 mm/s. Next, tantalum beads were inserted into the femur and tibia of two fresh frozen cadaver knees to compare the dynamic kinematics measured by matching knee models to the kinematics from the tantalum bead matching—a technique similar to Roentgen stereophotogrammetric analysis (RSA). Each cadaveric knee was attached to the crosshead of a tensile testing machine and vertically translated at a rate of 16.66 mm/s while images were captured with the DFIS. Subsequently, the tibia was held fixed and the femur manually flexed from full extension to 90° of flexion, as the DFIS acquired images. In vitro translation of the cadaver knee using the tensile testing machine deviated from predicted values by 0.08±0.14 mm for the matched knee models. The difference between matching the knee and tantalum bead models during the dynamic flexion–extension motion of the knee was 0.1±0.65°/s in flexion speed; 0.24±0.16 mm in posterior femoral translation; and 0.16±0.61° in internal–external tibial rotation. Finally, we applied the method to investigate the knee kinematics of a living subject during a step ascent and treadmill gait. High repeatability was demonstrated for the in vivo application. Thus, the DFIS provides an easy and powerful tool for accurately determining 6DOF positions of the knee when performing daily functional activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号