首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological and social factors underpinning the inequality of male mating success in animal societies can be related to sex ratio, sexual conflict between breeders, effects of nonbreeders, resource dispersion, climatic conditions, and the various sequential stages of mating competition that constitute the sexual selection process. Here, we conducted an individual‐based study to investigate how local resource availability and demography interact with annual climate conditions to determine the degree of male mating inequality, and thus opportunity for sexual selection across two sequential reproductive episodes (harem and subsequent mate acquisition) in a naturally regulated (feral) horse population in Sable Island National Park Preserve, Canada. Using a 5‐year, spatially explicit, mark‐resight dataset and hierarchical mixed‐effects linear modeling, we evaluated the influence of adult sex ratio (ASR) on mating success and then tested for effects of freshwater availability, density, unpaired male abundance, and precipitation during each breeding season. Unpaired male abundance, freshwater availability, and ASR differed in their effects on male mating success according to year and selection episode. Opportunity for sexual selection in males associated with harem acquisition increased with ASR, and unpaired male abundance further explained weather‐related interannual variation after accounting for ASR. In contrast, once a harem was secured, ASR had little effect on male mating inequality in regard to acquiring additional females, while interannual variation in mating inequality increased with decreasing freshwater availability. Our findings show that local demography, resource availability, and weather effect opportunity for sexual selection in males differently depending on selection episode, and can attenuate or accentuate effects of ASR.  相似文献   

2.
Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.  相似文献   

3.
Observations on mating behaviours and strategies guide our understanding of mating systems and variance in reproductive success. However, the presence of cryptic strategies often results in situations where social mating system is not reflective of genetic mating system. We present such a study of the genetic mating system of a harem-forming bat Cynopterus sphinx where harems may not be true indicators of male reproductive success. This temporal study using data from six seasons on paternity reveals that social harem assemblages do not play a role in the mating system, and variance in male reproductive success is lower than expected assuming polygynous mating. Further, simulations reveal that the genetic mating system is statistically indistinguishable from promiscuity. Our results are in contrast to an earlier study that demonstrated high variance in male reproductive success. Although an outcome of behavioural mating patterns, standardized variance in male reproductive success (I(m)) affects the opportunity for sexual selection. To gain a better understanding of the evolutionary implications of promiscuity for mammals in general, we compared our estimates of I(m) and total opportunity for sexual selection (I(m) /I(f), where I(f) is standardized variance in female reproductive success) with those of other known promiscuous species. We observed a broad range of I(m) /I(f) values across known promiscuous species, indicating our poor understanding of the evolutionary implications of promiscuous mating.  相似文献   

4.
Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation occurs independently of sexual selection.  相似文献   

5.
Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.  相似文献   

6.
The contribution of extra‐pair paternity (EPP) to sexual selection has received considerable attention, particularly in socially monogamous species. However, the importance of EPP remains difficult to assess quantitatively, especially when many extra‐pair young have unknown sires. Here, we combine measurements of the opportunity for selection (I), the opportunity for sexual selection (IS), and the strength of selection on mating success (Bateman gradient, βSS) with a novel simulation of random mating tailored to the specific mating system of the blue tit (Cyanistes caeruleus). In a population where social polygyny and EPP are common, the opportunity for sexual selection was significantly stronger and Bateman gradients significantly steeper for resident males than for females. In general, success with the social mate(s) contributed most to variation in male reproductive success. Effects of EPP were small, but significantly higher than expected under random mating. We used sibship analysis to estimate the number of unknown sires in our population. Under the assumption that the unknown sires are nonbreeding males, EPP reduced the variance in and the strength of selection on mating success, a possibility that hitherto has not been considered.  相似文献   

7.
8.
Spatio-temporal variations of lifetime reproductive succes (LRS) of both male and female individuals of a coreid bugColpula lativentris were measured and analyzed using the multiple regression method of Arnold and Wade (1984a, b). The standardized variance of LRS was larger in males than that in females as males often to secure mates for a long period whereas females could easily find mates and oviposit simply dependent on ovarial maturation. LRS was partitioned into 4 consecutive fitness components: (1) reproductive lifespan, (2) copulating efficiency, (3) guarding efficiency (for males) or oviposition efficiency (for females), and (4) number of eggs per clutch. In males copulating efficiency was the largest determining factor of LRS, whereas in females reproductive lifespan was the most important factor. Such tendencies were stable on both a yearly and local basis. Patterns of relative contribution of natural selection (reproductive lifespan and number of eggs per clutch) and sexual selection (copulating efficiency and guarding or oviposition efficiency) to LRS were clearly different between males and females. This sexual difference is, at least to some extent, thought to be brought about by sexual selection among males for mating opportunity, though no physical fight was observed among males. Directional selection on body length was found only in relation to the clutch size of females because large females tended to lay larger clutches. No significant directional selection was found in other fitness components.  相似文献   

9.
Competition for limiting resources and stress can magnify variance in fitness and therefore selection. But even in a common environment, the strength of selection can differ across the sexes, as their fitness is often limited by different factors. Indeed, most taxa show stronger selection in males, a bias often ascribed to intense competition for access to mating partners. This sex bias could reverberate on many aspects of evolution, from speed of adaptation to genome evolution. It is unclear, however, whether stronger opportunity for selection in males is a pattern robust to sex-specific stress or resource limitation. We test this in the model species Callosobruchus maculatus by comparing female and male opportunity for selection (i) with and without limitation of quality oviposition sites, and (ii) under delayed age at oviposition. Decreasing the abundance of the resource key to females or increasing their reproductive age was challenging, as shown by a reduction in mean fitness, but opportunity for selection remained stronger in males across all treatments, and even more so when oviposition sites were limiting. This suggests that males remain the more variable sex independent of context, and that the opportunity for selection through males is indirectly affected by female-specific resource limitation.  相似文献   

10.
Conflicts between the sexes over control of reproduction are thought to lead to a cost of sexual selection through the evolution of male traits that manipulate female reproductive physiology and behaviour, and female traits that resist this manipulation. Although studies have begun to document negative fitness effects of sexual conflict, studies showing the expected association between sexual conflict and the specific behavioural mechanisms of sexual selection are lacking. Here we experimentally manipulated the opportunity for sexual conflict in the cockroach. Nauphoeta cinerea and showed that, for this species, odour cues in the social environment influence the behavioural strategies and fitness of males and females during sexual selection. Females provided with the opportunity for discriminating between males but not necessarily mating with preferred males produced fewer male offspring than females mated at random. The number of female offspring produced was not affected, nor was the viability of the offspring. Experimental modification of the composition of the males' pheromone showed that the fecundity effects were caused by exposure to the pheromone component that makes males attractive to females but also makes males less likely to be dominant. Female mate choice therefore carries a demographic cost but functions to avoid male manipulation and aggression. Male-male competition appears to function to circumvent mate choice rather than directly manipulating females, as the mate choice can be cryptic. The dynamic struggle between the sexes for control of mating opportunities and outcomes in N. cinerea therefore reveals a unique role for sexual conflict in the evolution of the behavioural components of sexual selection.  相似文献   

11.
Classic sex role theory predicts that sexual selection should be stronger in males in taxa showing conventional sex roles and stronger in females in role reversed mating systems. To test this very central prediction and to assess the utility of different measures of sexual selection, we estimated sexual selection in both sexes in four seed beetle species with divergent sex roles using a novel experimental design. We found that sexual selection was sizeable in females and the strength of sexual selection was similar in females and males in role‐reversed species. Sexual selection was overall significantly stronger in males than in females and residual selection formed a substantial component of net selection in both sexes. Furthermore, sexual selection in females was stronger in role‐reversed species compared to species with conventional sex roles. Variance‐based measures of sexual selection (the Bateman gradient and selection opportunities) were better predictors of sexual dimorphism in reproductive behavior and morphology across species compared to trait‐based measures (selection differentials). Our results highlight the importance of using assays that incorporate components of fitness manifested after mating. We suggest that the Bateman gradient is generally the most informative measure of the strength of sexual selection in comparisons across sexes and/or species.  相似文献   

12.
For many species in nature, a sire's progeny may be distributed among a few or many dams. This poses logistical challenges--typically much greater across males than across females--for assessing means and variances in mating success (number of mates) and reproductive success (number of progeny). Here we overcome these difficulties by exhaustively analyzing a population of green swordtail fish (Xiphophorus helleri) for genetic paternity (and maternity) using a suite of highly polymorphic microsatellite loci. Genetic analyses of 1476 progeny from 69 pregnant females and 158 candidate sires revealed pronounced skews in male reproductive success both within and among broods. These skews were statistically significant, greater than in females, and correlated in males but not in females with mating success. We also compare the standardized variances in swordtail reproductive success to the few such available estimates for other taxa, notably several mammal species with varied mating systems and degrees of sexual dimorphism. The comparison showed that the opportunity for selection on male X. helleri is among the highest yet reported in fishes, and it is intermediate compared to estimates available for mammals. This study is one of a few exhaustive genetic assessments of joint-sex parentage in a natural fish population, and results are relevant to the operation of sexual selection in this sexually dimorphic, high-fecundity species.  相似文献   

13.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

14.
Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates'' offspring, i.e. only when Cov(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak.  相似文献   

15.
Major components of male and female lifetime reproductive success (LRS) were quantified for a damselfly that exhibits “scramble competition” for mates. The opportunity for selection on male reproduction was potentially 2.9 times that for females. Differential fertility/clutch and survivorship each accounted for about half of the total variation in female reproductive success. Variation in fertilization efficiency accounted for 7% of the total opportunity for selection on males. Although differences in survivorship and mating efficiency each contributed to about a third of the total opportunity for selection on male reproduction, both components appeared to be influenced by random factors. Survivorship was age-independent, and the mating distributions among males with equal mating opportunities were indistinguishable from those expected if matings were random with respect to male phenotype. Because the proportion of the standarized variance (I) in LRS that was attributed to sexual selection depended on the way the selective episodes were defined, the sample of individuals included in the partitioning analysis, and the degree of sexual selection on mated males that could be detected, my results caution against drawing conclusions about the dynamics of sexual selection on populations based on a superficial comparison of I values.  相似文献   

16.
Sexual selection can increase rates of adaptation by imposing strong selection in males, thereby allowing efficient purging of the mutation load on population fitness at a low demographic cost. Indeed, sexual selection tends to be male‐biased throughout the animal kingdom, but little empirical work has explored the ecological sensitivity of this sex difference. In this study, we generated theoretical predictions of sex‐specific strengths of selection, environmental sensitivities and genotype‐by‐environment interactions and tested them in seed beetles by manipulating either larval host plant or rearing temperature. Using fourteen isofemale lines, we measured sex‐specific reductions in fitness components, genotype‐by‐environment interactions and the strength of selection (variance in fitness) in the juvenile and adult stage. As predicted, variance in fitness increased with stress, was consistently greater in males than females for adult reproductive success (implying strong sexual selection), but was similar in the sexes in terms of juvenile survival across all levels of stress. Although genetic variance in fitness increased in magnitude under severe stress, heritability decreased and particularly so in males. Moreover, genotype‐by‐environment interactions for fitness were common but specific to the type of stress, sex and life stage, suggesting that new environments may change the relative alignment and strength of selection in males and females. Our study thus exemplifies how environmental stress can influence the relative forces of natural and sexual selection, as well as concomitant changes in genetic variance in fitness, which are predicted to have consequences for rates of adaptation in sexual populations.  相似文献   

17.
In mammals, species with highly male-biased sexual size dimorphismtend to have high variance in male reproductive success. However,little information is available on patterns of sexual selection,variation in male and female reproductive success, and bodysize and mating success in species with female-biased size dimorphism.We used parentage data from microsatellite DNA loci to examinethese issues in the yellow-pine chipmunk (Tamias amoenus), asmall ground squirrel with female-biased sexual size dimorphism.Chipmunks were monitored over 3 years in the Kananaskis Valley,Alberta, Canada. We found evidence of high levels of multiplepaternity within litters. Variation in male and female reproductivesuccess was equal, and the opportunity for sexual selectionwas only marginally higher in males than females. Male and femalereproductive success both depended on mating success. We foundno evidence that the number of genetic mates a male had dependedon body size. Our results are consistent with a promiscuousmating system in which males and female mate with multiple partners.Low variation in male reproductive success may be a generalfeature of mammalian species in which females are larger thanmales.  相似文献   

18.
Males' evolutionary responses to experimental removal of sexual selection   总被引:7,自引:0,他引:7  
We evaluated the influence of pre- and post-copulatory sexual selection upon male reproductive traits in a naturally promiscuous species, Drosophila melanogaster. Sexual selection was removed in two replicate populations through enforced monogamous mating with random mate assignment or retained in polyandrous controls. Monogamous mating eliminates all opportunities for mate competition, mate discrimination, sperm competition, cryptic female choice and, hence, sexual conflict. Levels of divergence between lines in sperm production and male fitness traits were quantified after 38-81 generations of selection. Three a priori predictions were tested: (i) male investment in spermatogenesis will be lower in monogamy-line males due to the absence of sperm competition selection, (ii) due to the evolution of increased male benevolence, the fitness of females paired with monogamy-line males will be higher than that of females paired with control-line males, and (iii) monogamy-line males will exhibit decreased competitive reproductive success relative to control-line males. The first two predictions were supported, whereas the third prediction was not. Monogamy males evolved a smaller body size and the size of their testes and the number of sperm within the testes were disproportionately further reduced. In contrast, the fitness of monogamous males (and their mates) was greater when reproducing in a non-competitive context: females mated once with monogamous males produced offspring at a faster rate and produced a greater total number of surviving progeny than did females mated to control males. The results indicate that sexual selection favours the production of increased numbers of sperm in D. melanogaster and that sexual selection favours some male traits conferring a direct cost to the fecundity of females.  相似文献   

19.
Sexual selection is most often thought of as acting on organismal traits, such as size or color. However, individuals’ habitat use may also affect mating success. Here, we show that, in threespine stickleback, nest depth can be a target of sexual selection. In postglacial lakes in British Columbia, male threespine stickleback nest in a narrow range of depths. Prior studies revealed heritable variation in males’ preferred nest microhabitat. We surveyed four natural populations, finding that male stickleback with shallower nests were more successful at breeding. Indeed, nest depth was a much stronger predictor of male mating success than more commonly studied targets of sexual selection in stickleback (size, condition, shape, color, infection status). This selection on nest depth means that variance in fitness changed predictably across microhabitats, altering the opportunity for sexual selection to act on other traits. Accordingly, we show that sexual selection on other male traits is strongest where variance in nesting success is highest (at intermediate nest depths in some lakes). We conclude that males’ choice of nesting microhabitat is an especially important target of sexual selection, resulting in fine‐scale spatial variation in sexual selection on other traits.  相似文献   

20.
Studies of disease in relation to animal mating systems have focused on sexual selection and the evolution of sexual reproduction. Relatively little work has examined other aspects of ecological and evolutionary relationships between host social and sexual behaviour, and dynamics and prevalence of infectious diseases; this is particularly evident with respect to sexually transmitted diseases (STDs). Here, we use a simulation approach to investigate rates of STD spread in host mating systems ranging from permanent monogamy to serial polygyny or polyandry and complete promiscuity. The model assumes that one sex (female) is differentially attracted to the other, such that groups of varying size are formed within which mating and disease transmission occur. The results show that equilibrium disease levels are generally higher in females than males and are a function of variance in male mating success and the likelihood of a female switching groups between mating seasons. Moreover, initial rates of disease spread (determining whether an STD establishes in a population) depend on patterns of host movement between groups, variance in male mating success and host life history (e.g. mortality rates). Male reproductive success can be reduced substantially by a sterilizing STD and this reduction is greater in males that are more 'attractive' to females. In contrast, females that associate with more attractive males have lower absolute fitness than females associating with less attractive males. Thus, the potential for STDs to act as a constraint on directional selection processes leading to polygyny (or polyandry) is likely to depend on the details of mate choice and group dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号