首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bateman''s principle is not only used to explain sex differences in mating behaviour, but also to determine which sex has the greater opportunity for sexual selection. It predicts that the relationship between the number of mates and the number of offspring produced should be stronger for males than for females. Yet, it is unclear whether Bateman''s principle holds in cooperatively breeding systems where the strength of selection on traits used in intrasexual competition is high in both sexes. We tested Bateman''s principle in the cooperatively breeding superb starling (Lamprotornis superbus), finding that only females showed a significant, positive Bateman gradient. We also found that the opportunity for selection was on average higher in females, but that its strength and direction oscillated through time. These data are consistent with the hypothesis that sexual selection underlies the female trait elaboration observed in superb starlings and other cooperative breeders. Even though the Bateman gradient was steeper for females than for males, the year-to-year oscillation in the strength and direction of the opportunity for selection likely explains why cooperative breeders do not exhibit sexual role reversal. Thus, Bateman''s principle may not hold in cooperative breeders where both sexes appear to be under mutually strong sexual selection.  相似文献   

2.
In sex‐role‐reversed species, sexual selection acts more strongly on females than on males, a situation that can result in the evolution of secondary sexual traits in females and strong mating preferences in males. While some research exploring mating preferences in sex‐role‐reversed species has been conducted, overall, this topic remains relatively unexplored. The Gulf pipefish, Syngnathus scovelli, is a highly polyandrous pipefish species. Sexual selection is significantly stronger in females than in males, which has led to the evolution of both morphological and behavioral female secondary sexual traits. However, because males gestate the offspring in specialized pouches and make a substantial investment in embryos during development, females may also benefit from being choosy. The goal of this study was to examine both male and female mating preferences in this species. We found that male mating preference was significantly associated with female courtship behavior. Larger females were also able to maintain these behaviors for longer intervals than smaller females. No evidence of female mating preference in regard to male size was observed but the data suggest that male behaviors may be providing positive reinforcement to courting females. This research provides further insight into how mate preferences vary among sex‐role‐reversed species.  相似文献   

3.
As a conspicuous evolutionary mechanism, sexual selection has received much attention from theorists and empiricists. Although the importance of the mating system to sexual selection has long been appreciated, the precise relationship remains obscure. In a classic experimental study based on parentage assessment using visible genetic markers, more than 50 years ago A. J. Bateman proposed that the cause of sexual selection in Drosophila is 'the stronger correlation, in males (relative to females), between number of mates and fertility (number of progeny)'. Half a century later, molecular genetic techniques for assigning parentage now permit mirror-image experimental tests of the 'Bateman gradient' using sex-role-reversed species. Here we show that, in the male-pregnant pipefish Syngnathus typhle, females exhibit a stronger positive association between number of mates and fertility than do males and that this relationship responds in the predicted fashion to changes in the adult sex ratio. These findings give empirical support to the idea that the relationship between mating success and number of progeny, as characterized by the Bateman gradient, is a central feature of the genetic mating system affecting the strength and direction of sexual selection.  相似文献   

4.
The operational sex ratio (OSR) has long been assumed to be a key ecological factor determining the opportunity and direction of sexual selection. However, recent theoretical work has challenged this view, arguing that a biased OSR does not necessarily result in greater monopolisation of mates and therefore stronger sexual selection in the mate‐limited sex. Hence, the role of the OSR for shaping animal mating systems remains a conundrum in sexual selection research. Here we took a meta‐analytic approach to test whether OSR explains interspecific variation in sexual selection metrics across a broad range of animal taxa. Our results demonstrate that the OSR predicts the opportunity for sexual selection in males and the direction of sexual selection in terms of sex differences in both the opportunity for sexual selection and the Bateman gradient (i.e. the selection differential of mating success), as predicted by classic theory.  相似文献   

5.
Male pregnancy in the family Syngnathidae (pipefishes, seahorses and seadragons) predisposes males to limit female reproductive success; sexual selection may then operate more strongly on females and female sexual signals may evolve (sex-role reversal). A bewildering array of female signals has evolved in Syngnathids, e.g. skin folds, large body size, colouration, markings on the body and elaborate courtship. These female sexual signals do not seem quantitatively or qualitatively different from those that evolve in males in species with conventional sex roles where males provide females or offspring with direct benefits. In several syngnathid species, males also evolve ornaments, females are choosy in addition to being competitive and males compete as well as choosing partners. Thus, sex roles form a continuum, spanning from conventional to reversed within this group of fishes. Cases are presented here suggesting that stronger sexual selection on females may be most extreme in species showing classical polyandry (one male mates with several females, such as many species where males brood their eggs on the trunk), intermediate in polygynandrous species (males and females both mate with more than one partner, as in many species where males brood their eggs on the tail) and least extreme, even exhibiting conventional sex roles, in monogamous species (one male mates solely with one female, as in many seahorses and tropical pipefishes). At the same time caution is needed before unanimously establishing this pattern: first, the connection between mating patterns, strength of sexual selection, sex roles and ornament expression is far from simple and straightforward, and second, knowledge of the actual morphology, ecology and behaviour of most syngnathid species is scanty. Basically only a few Nerophis, Syngnathus and Hippocampus species have been studied in any detail. It is known, however, that this group of fishes exhibits a remarkable variation in sex roles and ornamentation, making them an ideal group for the study of mating patterns, sexual selection and sexually selected signals.  相似文献   

6.
What explains variation in the strength of sexual selection across species, populations or differences between the sexes? Here, we show that unifying two well‐known lines of thinking provides the necessary conceptual framework to account for variation in sexual selection. The Bateman gradient and the operational sex ratio (OSR) are incomplete in complementary ways: the former describes the fitness gain per mating and the latter the potential difficulty of achieving it. We combine this insight with an analysis of the scope for sexually selected traits to spread despite naturally selected costs. We explain why the OSR sometimes does not affect the strength of sexual selection. An explanation of sexual selection becomes more logical when a long ‘dry time’ (‘time out’, recovery after mating due to e.g. parental care) is understood to reduce the expected time to the next mating when in the mating pool (i.e. available to mate again). This implies weaker selection to shorten the wait. An integrative view of sexual selection combines an understanding of the origin of OSR biases with how they are reflected in the Bateman gradient, and how this can produce selection for mate acquisition traits despite naturally selected costs.  相似文献   

7.
Despite numerous indices proposed to predict the evolution of mating systems, a unified measure of sexual selection has remained elusive. Three previous studies have compared indices of sexual selection under laboratory conditions. Here, we use a genetic study to compare the most widely used measures of sexual selection in natural populations. We explored the mating and reproductive successes of male and female bank voles, Clethrionomys glareolus, across manipulated operational sex ratios (OSRs) by genotyping all adult and pup bank voles on 13 islands using six microsatellite loci. We used Bateman's principles (Is and I and Bateman gradients) and selection coefficients (s' and beta') to evaluate, for the first time, the genetic mating system of bank voles and compared these measures with alternative indices of sexual selection (index of monopolization and Morisita's index) across the OSRs. We found that all the sexual selection indices show significant positive intercorrelations for both males and females, suggesting that Bateman's principles are an accurate and a valid measure of the mating system. The Bateman gradient, in particular, provides information over and above that of other sexual selection indices. Male bank voles show a greater potential for sexual selection than females, and Bateman gradients indicate a polygynandrous mating system. Selection coefficients reveal strong selection gradients on male bank vole plasma testosterone level rather than body size.  相似文献   

8.
Variation in reproductive success is most pronounced in species with strongly biased operational sex ratios, prominent sexual dimorphisms, and where mate competition and choice are likely. We studied sexual selection in eastern tiger salamanders (Ambystoma t. tigrinum) and examined the role of body size on reproductive success. We genotyped 155 adults and 1,341 larvae from 90 egg masses at six microsatellite loci. Parentage analyses revealed both sexes engaged in multiple matings, but was more common among females (64%) than males (27%). However, the standardized variance in mating and reproductive success was higher in males. Bateman gradients were significant and nearly identical in both sexes, suggesting that sexual selection was roughly equal between sexes. Body size was not correlated with mating or reproductive success in either sex. The apparent lack of sexual selection on body size may be a result of sperm storage, sperm competition, alternative mating tactics, and/or random induction of spermatophores.  相似文献   

9.
The contribution of extra‐pair paternity (EPP) to sexual selection has received considerable attention, particularly in socially monogamous species. However, the importance of EPP remains difficult to assess quantitatively, especially when many extra‐pair young have unknown sires. Here, we combine measurements of the opportunity for selection (I), the opportunity for sexual selection (IS), and the strength of selection on mating success (Bateman gradient, βSS) with a novel simulation of random mating tailored to the specific mating system of the blue tit (Cyanistes caeruleus). In a population where social polygyny and EPP are common, the opportunity for sexual selection was significantly stronger and Bateman gradients significantly steeper for resident males than for females. In general, success with the social mate(s) contributed most to variation in male reproductive success. Effects of EPP were small, but significantly higher than expected under random mating. We used sibship analysis to estimate the number of unknown sires in our population. Under the assumption that the unknown sires are nonbreeding males, EPP reduced the variance in and the strength of selection on mating success, a possibility that hitherto has not been considered.  相似文献   

10.
Bateman's principle predicts the intensity of sexual selectiondepends on rates of increase of fecundity with mating successfor each sex (Bateman slopes). The sex with the steeper increase(usually males) is under more intense sexual selection and isexpected to compete for access to the sex under less intensesexual selection (usually females). Under Bateman and modernrefinements of his ideas, differences in parental investmentare key to defining Bateman slopes and thus sex roles. Othertheories predict sex differences in mating investment, or anyexpenditures that reduce male potential reproductive rate, canalso control sex roles. We focus on sexual behaviour in systemswhere males have low paternal investment but frequently mateonly once in their lifetimes, after which they are often killedby the female. Mating effort (=terminal investment) is highfor these males, and many forms of investment theory might predictsex role reversal. We find no qualitative evidence for sex rolereversal in a sample of spiders that show this extreme maleinvestment pattern. We also present new data for terminally-investingredback spiders (Latrodectus hasselti). Bateman slopes are relativelysteep for male redbacks, and, as predicted by Bateman, thereis little evidence for role reversal. Instead, males are competitiveand show limited choosiness despite wide variation in femalereproductive value. This study supports the proposal that highmale mating investment coupled with low parental investmentmay predispose males to choosiness but will not lead to rolereversal. We support the utility of using Bateman slopes topredict sex roles, even in systems with extreme male matinginvestment.  相似文献   

11.
The genetic mating system is a key component of the sexual selection process, yet methods for the quantification of mating systems remain controversial. One approach involves metrics derived from Bateman's principles, which are based on variances in mating and reproductive success and the relationship between them. However, these measures are extremely difficult to measure for both sexes in open populations, because missing data can result in biased estimates. Here, we develop a novel approach for the estimation of mating system metrics based on Bateman's principles and apply it to a microsatellite‐based parentage analysis of a natural population of the dusky pipefish, Syngnathus floridae. Our results show that both male and female dusky pipefish have significantly positive Bateman gradients. However, females exhibit larger values of the opportunity for sexual selection and the opportunity for selection compared to males. These differences translate into a maximum intensity of sexual selection () for females three times larger than that for males. Overall, this study identifies a critical source of bias that affects studies of mating systems in open populations, presents a novel method for overcoming this bias, and applies this method for the first time in a sex‐role‐reversed pipefish.  相似文献   

12.
Why mainly males compete and females take a larger share in parental care remains an exciting question in evolutionary biology. Role‐reversed species are of particular interest, because such ‘exceptions’ help to test the rule. Using mating systems theory as a framework, we compared the reproductive ecology of the two most contrasting coucals with regard to sexual dimorphism and parental care: the black coucal with male‐only care and the biparental white‐browed coucal. Both species occur in the same lush habitat and face similar ecological conditions, but drastically differ in mating system and sexual dimorphism. Black coucals were migratory and occurred at high breeding densities. With females being obligatory polyandrous and almost twice as heavy as males, black coucals belong to the most extreme vertebrates with reversed sexual dimorphism. Higher variance in reproductive success in fiercely competing females suggests that sexual selection is stronger in females than in males. In contrast, resident white‐browed coucals bred at low densities and invariably in pairs. They were almost monomorphic and the variance in reproductive success was similar between the sexes. Black coucals were more likely to lose nests than white‐browed coucals, probably facilitating female emancipation of parental care in black coucals. We propose that a combination of high food abundance, high population density, high degree of nest loss and male bias in the adult sex ratio represent ecological conditions that facilitate role reversal and polyandry in coucals and terrestrial vertebrates in general.  相似文献   

13.
Although many studies examine the form of sexual selection in males, studies characterizing this selection in females remain sparse. Sexual selection on females is predicted for sex‐role‐reversed Mormon crickets, Anabrus simplex, where males are choosy of mates and nutrient‐deprived females compete for matings and nutritious nuptial gifts. We used selection analyses to describe the strength and form of sexual selection on female morphology. There was no positive linear sexual selection on the female body size traits predicted to be associated with male preferences and female competition. Instead, we detected selection for decreasing head width and mandible length, with stabilizing selection as the dominant form of nonlinear selection. Additionally, we tested the validity of a commonly used instantaneous measure of mating success by comparing selection results with those determined using cumulative mating rate. The two fitness measures yielded similar patterns of selection, supporting the common sampling method comparing mated and unmated fractions.  相似文献   

14.
Bateman''s principles explain sex roles and sexual dimorphism through sex-specific variance in mating success, reproductive success and their relationships within sexes (Bateman gradients). Empirical tests of these principles, however, have come under intense scrutiny. Here, we experimentally show that in replicate groups of red junglefowl, Gallus gallus, mating and reproductive successes were more variable in males than in females, resulting in a steeper male Bateman gradient, consistent with Bateman''s principles. However, we use novel quantitative techniques to reveal that current methods typically overestimate Bateman''s principles because they (i) infer mating success indirectly from offspring parentage, and thus miss matings that fail to result in fertilization, and (ii) measure Bateman gradients through the univariate regression of reproductive over mating success, without considering the substantial influence of other components of male reproductive success, namely female fecundity and paternity share. We also find a significant female Bateman gradient but show that this likely emerges as spurious consequences of male preference for fecund females, emphasizing the need for experimental approaches to establish the causal relationship between reproductive and mating success. While providing qualitative support for Bateman''s principles, our study demonstrates how current approaches can generate a misleading view of sex differences and roles.  相似文献   

15.
Sexual selection imposed by mating preferences is often implicated in the evolution of both sexual dimorphism and divergence between species in signalling traits. Epicuticular compounds (ECs) are important signalling traits in insects and show extensive variability among and within taxa. Here, we investigate whether variation in the multivariate EC profiles of two sex role‐reversed beetle species, Megabruchidius dorsalis and Megabruchidius tonkineus, predicts mate attractiveness and mating success in males and females. The two species had highly distinct EC profiles and both showed significant sexual dimorphism in ECs. Age and mating status in both species were also distinguishable by EC profile. Males and females of both species showed significant association between their EC profile and attractiveness, measured both as latency to mating and as success in mate‐choice trials. Remarkably, the major multivariate vector describing attractiveness was correlated in both species, both sexes, and in both choice and no‐choice experiments such that increased attractiveness was in all cases associated with a similar multivariate modification of EC composition. Furthermore, in both sexes this vector of attractiveness was associated with more male‐like EC profiles, as well as those characterizing younger and nonvirgin individuals, which might reflect a general preference for individuals of high condition in both sexes. Despite significant sexual selection on EC composition, however, we found no support for the proposition that sexual selection is responsible for divergence in ECs between these species.  相似文献   

16.
In pipefishes and seahorses (family Syngnathidae), the males provide all postzygotic care of offspring by brooding embryos on their ventral surfaces. In some species, this phenomenon of male "pregnancy" results in a reversal of the usual direction of sexual selection, such that females compete more than males for access to mates, and secondary sexual characteristics evolve in females. Thus the syngnathids can provide critical tests of theories related to the evolution of sex differences and sexual selection. Microsatellite-based studies of the genetic mating systems of several species of pipefishes and seahorses have provided insights into important aspects of the natural history and evolution of these fishes. First, males of species with completely enclosed pouches have complete confidence of paternity, as might be predicted from parental investment theory for species in which males invest so heavily in offspring. Second, a wide range of genetic mating systems have been documented in nature, including genetic monogamy in a seahorse, polygynandry in two species of pipefish, and polyandry in a third pipefish species. The genetic mating systems appear to be causally related to the intensity of sexual selection, with secondary sex characters evolving most often in females of the more polyandrous species. Third, genetic studies of captive-breeding pipefish suggest that the sexual selection gradient (or Bateman gradient) may be a substantially better method for characterizing the mating system than previously available techniques. Finally, these genetic studies of syngnathid mating systems have led to some general insights into the occurrence of clustered mutations at microsatellite loci, the utility of linked loci in studies of parentage, and the use of parentage data for direct estimation of adult population size.  相似文献   

17.
The roles of females and males in mating competition and mate choice have lately proven more variable, between and within species, than previously thought. In nature, mating competition occurs during mate search and is expected to be regulated by the numbers of potential mates and same-sex competitors. Here, we present the first study to test how a temporal change in sex roles affects mating competition and mate choice during mate sampling. Our model system (the marine fish Gobiusculus flavescens) is uniquely suitable because of its change in sex roles, from conventional to reversed, over the breeding season. As predicted from sex role theory, courtship was typically initiated by males and terminated by females early in the breeding season. The opposite pattern was observed late in the season, at which time several females often simultaneously courted the same male. Mate-searching females visited more males early than late in the breeding season. Our study shows that mutual mate choice and mating competition can have profound effects on female and male behavior. Future work needs to consider the dynamic nature of mating competition and mate choice if we aim to fully understand sexual selection in the wild.  相似文献   

18.
Taxa in which males alone invest in postzygotic care of offspring are often considered good models for investigating the proffered relationships between sexual selection and mating systems. In the pycnogonid sea spider Pycnogonum stearnsi, males carry large egg masses on their bodies for several weeks, so this species is a plausible candidate for sex-role reversal (greater intensity of sexual selection on females than on males). Here, we couple a microsatellite-based assessment of the mating system in a natural population with formal quantitative measures of genetic fitness to investigate the direction of sexual selection in P. stearnsi. Both sexes proved to be highly polygamous and showed similar standardized variances in reproductive and mating successes. Moreover, the fertility (number of progeny) of males and females appeared to be equally and highly dependent on mate access, as shown by similar Bateman gradients for the two sexes. The absence of sex-role reversal in this population of P. stearnsi is probably attributable to the fact that males are not limited by brooding space but have evolved an ability to carry large numbers of progeny. Body length was not a good predictor of male mating or reproductive success, so the aim of future studies should be to determine what traits are the targets of sexual selection in this species.  相似文献   

19.
Sexual reproduction implies binary outcomes of competitive interactions for access to male gametes: lifelong virgin females with null fitness vs. mated females with variable (generally nonzero) fitness. Female mating failure has long remained a dormant concept in sexual selection theory in part because it is acutely maladaptive (lifelong virgins that do not reproduce are strongly selected against) and also due to widespread acceptance of the Bateman–Trivers paradigm (anisogamy and correlated sex roles). Based on recent scientific output on lifelong virginity across multiple taxonomic groups in insects (Coleoptera, Diptera, Hemiptera, Lepidoptera, Odonata, Orthoptera, Strepsiptera), female mating failure has become a mainstay of sexual selection over the last decade. Lifelong virginity and senescence (death) are intertwined processes; old virgin females compensate for increased risk of lifelong virginity by becoming less choosy and increasing investment in mating‐related activities. Low rates of female lifelong virginity (<5%) in most natural populations of insects indicate that sex generally ‘works’ due to selective pressures acting on both males and females to enhance lifetime fitness. Mating failures are most common in insects with female flightlessness; these pressures may lead in evolutionary time to transitionary pathways from sexual reproduction to parthenogenesis. Female mating probability is affected by nonlinear density‐dependent processes dependent upon the scale of observation (mate‐encounter Allee effect at large spatial scales, mating interferences between females at small scales). Mate choice and sex role reversal (females being the active sexual partner) are ubiquitous in insects and arachnids with significant paternal investment, but consequences in terms of female lifelong virginity remain unknown. Logistically, conceptual development of female mating failure in insects is most limited by the lack of broadly applicable methods to assess rates of lifetime virginity among flighted females.  相似文献   

20.
According to theory, sexual selection in males may efficiently purge mutation load of sexual populations, reducing or fully compensating ‘the cost of males’. For this to occur, mutations not only need to be deleterious to both sexes, they also must affect males more than females. A frequently overlooked problem is that relative strength of selection on males versus females may vary between environments, with social conditions being particularly likely to affect selection in males and females differently. Here, we induced mutations in red flour beetles (Tribolium castaneum) and tested their effect in both sexes under three different operational sex ratios (1:2, 1:1 and 2:1). Induced mutations decreased fitness of both males and females, but their effect was not stronger in males. Surprisingly, operational sex ratio did not affect selection against deleterious mutations nor its relative strength in the sexes. Thus, our results show no support for the role of sexual selection in the evolutionary maintenance of sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号