首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Warfarin is a commonly prescribed oral anticoagulant with narrow therapeutic index. It achieves anti-coagulating effects by interfering with the vitamin K cycle. Warfarin has two enantiomers, S(−) and R(+) and undergoes stereoselective metabolism, with the S(−) enantiomer being more effective. We reported the intracellular metabolic profile in HepG2 cells incubated with S(−) and R(+) warfarin by GCMS. Chemometric method PCA was applied to analyze the individual samples. A total of 80 metabolites which belong to different categories were identified. Two batches of experiments (with and without the presence of vitamin K) were designed. In samples incubated with S(−) and R(+) warfarin, glucuronic acid showed significantly decreased in cells incubated with R(+) warfarin but not in those incubated with S(−) warfarin. It may partially explain the lower bio-activity of R(+) warfarin. And arachidonic acid showed increased in cells incubated with S(−) warfarin but not in those incubated with R(+) warfarin. In addition, a number of small molecules involved in γ-glutamyl cycle displayed ratio variations. Intracellular glutathione detection further validated the results. Taken together, our findings provided molecular evidence on a comprehensive metabolic profile on warfarin-cell interaction which may shed new lights on future improvement of warfarin therapy.  相似文献   

2.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The stereoselective uptake of propranolol enantiomers was investigated by using the K562 and K562 adriamycin‐resistant cell line (K562/ADR) as a model. An enantioselective RP‐HPLC method was applied to determine the accumulation of propranolol (PPL) stereoisomers in K562 and K562/ADR cells. The concentration, time and temperature dependent studies showed that the accumulation of S‐(?)‐PPL was higher than R‐(+)‐PPL in K562 cells and uptake of R‐(+)‐PPL was significantly higher than that of S‐(?)‐PPL in K562/ADR cells. The results indicate the enantioselective accumulation of propranolol enantiomers in K562 and K562 / ADR cells. Chirality 25:361–364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Alpha‐cypermethrin (α‐CP), [(RS)‐a‐cyano‐3‐phenoxy benzyl (1RS)‐cis‐3‐(2, 2‐dichlorovinyl)‐2, 2‐dimethylcyclopropanecarboxylate], comprises a diastereoisomer pair of cypermethrin, which are (+)‐(1R‐cis‐αS)–CP (insecticidal) and (?)‐(1S‐cis‐αR)–CP (inactive). In this experiment, the stereoselective degradation of α‐CP was investigated in rat liver microsomes by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐ (3, 5‐dimethylphenylcarbamate)‐based chiral stationary phase. The results revealed that the degradation of (?)‐(1S‐cis‐αR)‐CP was much faster than (+)‐(1R‐cis‐αS)‐CP both in enantiomer monomers and rac‐α‐CP. As for the enzyme kinetic parameters, there were some variances between rac‐α‐CP and the enantiomer monomers. In rac‐α‐CP, the Vmax and CLint of (+)‐(1R‐cis‐αS)–CP (5105.22 ± 326.26 nM/min/mg protein and 189.64 mL/min/mg protein) were about one‐half of those of (?)‐(1S‐cis‐αR)–CP (9308.57 ± 772.24 nM/min/mg protein and 352.19 mL/min/mg protein), while the Km of the two α‐CP enantiomers were similar. However, in the enantiomer monomers of α‐CP, the Vmax and Km of (+)‐(1R‐cis‐αS) ‐CP were 2‐fold and 5‐fold of (?)‐(1S‐cis‐αR)‐CP, respectively, which showed a significant difference with rac‐α‐CP. The CLint of (+)‐(1R‐cis‐αS)–CP (140.97 mL/min/mg protein) was still about one‐half of (?)‐(1S‐cis‐αR)–CP (325.72 mL/min/mg protein) in enantiomer monomers. The interaction of enantiomers of α‐CP in rat liver microsomes was researched and the results showed that there were different interactions between the IC50 of (?)‐ to (+)‐(1R‐cis‐αS)‐CP and (+)‐ to (?)‐(1S‐cis‐αR)‐CP(IC50(?)/(+) / IC50(+)/(?) = 0.61). Chirality 28:58–64, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
The pyrolytic behaviour of (?)‐(S)‐nicotine in methanol was investigated using on‐line pyrolysis GC/MS to establish whether racemization to the R(+) antipode occurs and to identify other products of pyrolysis. The conditions used included pyrolysing the sample for 15 seconds in an atmosphere of 9% oxygen in nitrogen (275ml/min total flow) across the temperature range of 200°C–1000°C. A chiral Cyclodex‐B analytical column (30m × 0.25mm i.d. × 0.25 μm film thickness) was used to separate the enantiomers of nicotine, although the two enantiomer peaks were not baseline resolved. The results of the experiment shows that there is no increase in (+)‐(R)‐nicotine levels across a wide temperature range. This suggests that the elevated levels of (+)‐R‐nicotine observed in tobacco smoke (compared to tobacco leaf material) are not due to the pyrolytic auto‐racemization of (?)‐(S)‐nicotine but are a result of more complex interactions between (?)‐(S)‐nicotine and other smoke components. The pyrolysis of isotopically labelled nicotine established that nicotine undergoes thermal decomposition to β‐nicotyrine which in turn may decompose to other products. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The fluorescences of warfarin and phenprocoumon are enhanced following complexation with β-cyclodextrin; (+)-(R)- and (?)-(S)-phenprocoumons have different affinities for this cyclodextrin, whereas the corresponding enantiomers of warfarin have similar binding constants. Apparently, hemiketal formation in the case of warfarin minimizes chiral discrimination. This is confirmed using a β-cyclodextrin bonded chromatography column on which the phenprocoumon enantiomers are separated, whereas those of warfarin are not.  相似文献   

7.
Verapamil (VER) is commercialized as a racemic mixture of the (+)‐(R)‐VER and (?)‐(S)‐VER enantiomers. VER is biotransformed into norverapamil (NOR) and other metabolites through CYP‐dependent pathways. N‐hexane is a solvent that can alter the metabolism of CYP‐dependent drugs. The present study investigated the influence of n‐hexane (nose‐only inhalation exposure chamber at concentrations of 88, 176, and 352 mg/m3) on the kinetic disposition of the (+)‐(R)‐VER, (?)‐(S)‐VER, (R)‐NOR and (S)‐NOR in rats treated with a single dose of racemic VER (10 mg/kg). VER and NOR enantiomers in rat plasma was analyzed by LC‐MS/MS (m/z = 441.3 > 165.5 for the NOR and m/z 455.3 > 165.5 for the VER enantiomers) using a Chiralpak® AD column. Pharmacokinetic analysis was performed using a monocompartmental model. The pharmacokinetics of VER was enantioselective in control rats, with higher plasma proportions of the (?)‐(S)‐VER eutomer (AUC0?∞ = 250.8 vs. 120.4 ng/ml/h; P ≤ 0.05, Wilcoxon test). The (S)‐NOR metabolite was also found to accumulate in plasma of control animals, with an S/R AUC0?∞ ratio of 1.5. The pharmacokinetic parameters AUC0?∞, Cl/F, Vd/F, and t1/2 obtained for VER and NOR enantiomers were not altered by nose‐only exposure to n‐hexane at concentrations of 88, 176, or 352 mg/m3 (P > 0.05, Kruskal‐Wallis test). However, the verapamil kinetic disposition was not enantioselective for the animals exposed to n‐hexane at concentrations equal to or higher than the TLV‐TWA. This finding is relevant considering that the (?)‐(S)‐VER eutomer is 10–20 times more potent than R‐(+)‐VER in terms of its chronotropic effect on atrioventricular conduction in rats and humans. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Evidence is accumulating to suggest that 3,4‐methylenedioxymethamphetamine (MDMA) has neurotoxic and neuroinflammatory properties. MDMA is composed of two enantiomers with different biological activities. In this study, we evaluated the in vivo effects of S(+)‐MDMA, R(?)‐MDMA, and S(+)‐MDMA in combination with R(?)‐MDMA on microglial and astroglial activation compared with racemic MDMA, by assessment of complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) immunoreactivity in the mouse striatum, nucleus accumbens, motor cortex, and substantia nigra. Motor activity and body temperature were also measured, to elucidate the physiological modifications paired with the observed glial changes. Similar to racemic MDMA (4 × 20 mg/kg), S(+)‐MDMA (4 × 10 mg/kg) increased both CD11b and GFAP in the striatum, although to a lower degree, whereas R(?)‐MDMA (4 × 10 mg/kg) did not induce any significant glial activation. Combined administration of S(+) plus R(?)‐MDMA did not induce any further activation compared with S(+)‐MDMA. In all other areas, only racemic MDMA was able to slightly activate the microglia, but not the astroglia, whereas enantiomers had no effect, either alone or in combination. Racemic MDMA and S(+)‐MDMA similarly increased motor activity and raised body temperature, whereas R(?)‐MDMA affected neither body temperature nor motor activity. Interestingly, the increase in body temperature was correlated with glial activation. The results show that no synergism, but only additivity of effects, is caused by the combined administration of S(+)‐ and R(?)‐MDMA, and underline the importance of investigating the biochemical and behavioral properties of the two MDMA enantiomers to understand their relative contribution to the neuroinflammatory and neurotoxic effects of MDMA.  相似文献   

9.
The stereoselective metabolism of lactofen in primary rat hepatocytes was studied using a chiral high‐performance liquid chromatographic (HPLC) method. Rac‐lactofen and its two enantiomers, S‐(+)‐ and R‐(?)‐lactofen, as well as two of its major metabolites, acifluorfen, S‐(+)‐ and R‐(?)‐desethyl lactofen, were used as substrates,. The single and joint cytotoxicity of parent compounds and the metabolites were assessed by coincubation with rat hepatocytes as target cells. Cytotoxicity was determined by the methyl tetrazolium (MTT) assay. In hepatocyte incubations, S‐(+)‐lactofen was degraded more rapidly than R‐(?)‐lactofen, and a stereospecific formation of S‐(+)‐desethyl lactofen was detected. Metabolism of lactofen to desethyl lactofen was processed with the retention of configuration, and the achiral compound, acifluorfen, was the shared metabolite generated from both S‐(+)‐ and R‐(?)‐lactofen. There was no chiral conversion of lactofen or desethyl lactofen enantiomers during the incubation. For the cytotoxicity research, the calculated EC50 values indicated that when being applied individually, the parent compound was less toxic than its metabolites, while the combination with metabolites enhanced its cytotoxic effects. The data presented here would be helpful for a more comprehensive assessment of the ecotoxicological and environmental risks of lactofen. Chirality 25:743–750, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Benalaxyl is widely applied as a fungicide during grape planting processing. In this experiment, the stereoselective behavior of benalaxyl was studied during the grape growth and wine‐making process. A simple method based on high‐performance liquid chromatography (HPLC) equipped with a chiral column and UV detector was established to separate and determine the enantiomers of benalaxyl. Stereoselective degradation of the two enantiomers of benalaxyl was found in grapes. The degradation of both enantiomers followed pseudofirst‐order kinetics, and the degradation rate of R‐(?)‐benalaxyl was faster than S‐(+)‐benalaxyl. The half‐life of R‐(?)‐benalaxyl was 27 h, while the half‐life of S‐(+)‐benalaxyl was 31 h. The enantiomer fraction value decreased from 0.50 to 0.34 and finally only S‐(+)‐benalaxyl could be detected. In the fermentation process, both enantiomers of benalaxyl were hardly degraded, and no configuration interconversion was observed. Meanwhile, both enantiomers of benalaxyl showed little influence on the growth of the yeast, consumption of carbon sources, or production of alcohol. The result of this study might provide more sufficient data for the evaluation of food safety and potential risk. Chirality 28:394–398, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
This study focused on the chiral characteristics of methamphetamine seizures in Shanghai for inferring the synthetic pathways of drugs. Capillary electrophoresis coupled to time‐of‐flight mass spectrometry was used for simultaneous chiral separation of amphetamine‐type stimulants and ephedrine, including S(+)‐amphetamine/R(?)‐amphetamine, S(+)‐methamphetamine/R(?)‐methamphetamine, (±)‐MDA (3,4‐methylenedioxyamphetamine), (±)‐MDMA (3,4‐methylenedioxymethamphetamine), (±)‐MDEA (3,4‐methylenedioxy‐N‐ethylamphetamine), d,l‐N‐ethylamphetamine, methylephedrine/methylpseudoephedrine, and 1S,2R(+)‐ephedrine/(?)‐ephedrine. The running buffer was 50‐mM ammonium formate (pH 2.2 was adjusted by 1‐M formic acid) containing 0.26% highly sulfated γ‐cyclodextrin as the chiral selector. All enantiomers were well resolved within 40 minutes by capillary electrophoresis at 20 kV in an uncoated fused‐silica capillary (50‐μm I.D. × 375‐μm O.D. × 90‐cm length) and detected by micro time‐of‐flight mass spectrometry. Twenty seized methamphetamine samples were determined by the established method. They were classified into two groups through their chiral characteristics.  相似文献   

13.
IL‐2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti‐cancer effect. Here, we demonstrated the anti‐cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL‐2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL‐2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL‐2R and down‐regulated the mRNA and protein levels of IL‐2R. Furthermore, TPD7 suppressed the downstream cascades of IL‐2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl‐2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti‐cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL‐2R signalling pathway.  相似文献   

14.
15.
Chiral pesticide enantiomers often show different bioactivity and toxicity; however, this property is usually ignored when evaluating their environmental and public health risks. Hexaconazole is a chiral fungicide used on a variety of crops for the control of many fungal diseases. This use provides opportunities for the pollution of food and soil. In this study, a sensitive and convenient chiral liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) method was developed and validated for measuring hexaconazole enantiomers in tomato, cucumber, and soil. Separation was by a reversed‐phase Chiralcel OD‐RH column, under isocratic conditions using a mixture of acetonitrile‐2 mM ammonium acetate in water (60/40, v/v) as the mobile phase at a flow rate of 0.4 mL/min. Parameters including the matrix effect, linearity, precision, accuracy and stability were undertaken. Then the proposed method was successfully applied to investigate the possible enantioselective degradation of rac‐hexaconazole in plants (tomato and cucumber) and soil under field conditions. The degradation of the two enantiomers of hexaconazole proved to be enantioselective and dependent on the media: The (+)‐enantiomer showed a faster degradation in plants, while the (?)‐enantiomer dissipated faster than the (+)‐form in field soil, resulting in relative enrichment of the opposite enantiomer. The results of this work demonstrate that both the environmental media and environmental conditions influenced the direction and rate of enantioselective degradation of hexaconazole. Chirality 25:160–169, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The intravenous (0.5 mg/kg) and oral (5 mg/kg) dose kinetics of verapamil were studied in 6 dogs during steady-state oral verapamil dosing (5 mg/kg every 8 h for 3 days). Racemic verapamil and norverapamil, a metabolite of verapamil, were quantitated in plasma by HPLC-fluorescence detection. The verapamil peaks eluting off the column were collected and rechromatographed on an Ultron-OVM column, which resolved the two verapamil enantiomers. After intravenous administration, the systemic clearance and apparent volume of distribution of (?)-(S)-verapamil were nearly twice that of the (+)-(R)-isomer. There was no difference in the elimination half-lives between the two isomers. After oral administration, the oral clearance of (?)-(S)-verapamil was 20 times that of the (+)-(R)-isomer. The apparent bioavailability of (+)-(R)-verapamil was over 14 times that of (?)-(S)-verapamil. The plasma protein binding of the (+)-(R)-isomer was slightly higher by 5% than (?)-(S)-verapamil; however, this effect was not enough to account for the difference between the apparent volume of distribution of the enantiomers, indicating that the tissue binding of (?)-(S)-verapamil was greater than that of the (+)-(R)-isomer. This data on the disposition of the enantiomers of verapamil in the dog is similar to that reported for man and demonstrates that the dog may be an appropriate animal model for man in future studies on the disposition of the enantiomers of verapamil. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The in vitro human serum albumin binding characteristics of the enantiomers of the major metabolites of warfarin [6-hydroxywarfarin (6-HW), 7-hydroxywarfarin (7-HW), (S)-warfarin alcohols [(S,S)- and (S,R)-WA], and (R,S)-warfarin alcohol [(R,S)-WA]] have been studied, using a stereospecific HPLC assay. Warfarin metabolites are less bound both within plasma and a 40 g/liter solution of human serum albumin than the enantiomers of warfarin. The reduced warfarin metabolites have a lower fraction unbound [1.33% for (S,R)-WA, 2.09% for (S,S)-WA, and 1.04% for (R,S)-WA] than hydroxylated metabolites [3.24% for (R)-6-HW, 4.26% (S)-6-HW, 4.49% for (R)-7-HW and 4.27% for (S)-7-HW] to HSA. Phenylbutazone produced a concentration-dependent increase in the unbound fraction of all metabolites. It was possible to predict the unbound fraction of warfarin metabolites based on the unbound fraction of warfarin enantiomers. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Hydroxychloroquine (HCQ) stereoselective distribution was investigated in rabbits after 20 mg/kg po of racemic-HCQ (rac-HCQ) and 20 mg/kg po of each enantiomer, 97% pure (?)-(R)-HCQ and 99% pure (+)-(S)-HCQ. Concentrations were 4 to 6 times higher in whole blood than in plasma. Melanin did not affect plasma and whole blood levels since concentrations did not differ between pigmented and nonpigmented animals. After single and multiple doses of the separate enantiomers, only 5–10% of the antipode could be measured, in blood or plasma. Therefore, there was no significant interconversion from one enantiomer into the other. Following rac-HCQ, plasma (+)-(S)-levels always surpassed (?)-(R)-ones while in whole blood, (?)-(R)-HCQ concentrations were always the highest. When the enantiomers were administered separately, blood concentrations achieved after (?)-(R)-HCQ were higher, especially after multiple doses. These observations suggest that (?)-(R)-HCQ is preferentially concentrated by cellular components of blood. This enantioselective distribution of HCQ could be secondary to a stereoselective protein binding to plasma proteins, although a more specific binding of (?)-(R)-HCQ to blood cells cannot be ruled out. Since in whole blood (?)-(R)-HCQ is retained in cellular components, metabolism would favour the more available (+)-(S)-enantiomer. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The chiral inversion and pharmacokinetics of two enantiomers of trantinterol, a new β2 agonist, were studied in rats dosed (+)‐ or (?)‐trantinterol separately. Plasma concentrations of (+)‐ and (?)‐trantinterol were measured by chiral stationary phase liquid chromatography tandem mass spectroscopy (LC‐MS/MS). The apparent inversion ratio was calculated as the ratio of AUC0‐t of (?)‐trantinterol or (+)‐trantinterol inverted from their antipodes to the sum of the AUC0‐t of (?)‐ and (+)‐trantinterol. Following single intravenous administration, both given enantiomers declined in similar plasma concentrations, suggesting that the two enantiomers have approximately the same disposition kinetics by the route of intravenous administration. However, after single oral administration, plasma concentrations of uninverted (?)‐trantinterol at many timepoints were significantly higher than those of uninverted (+)‐trantinterol, suggesting that the two enantiomers undergo apparently different absorption or metabolism after oral administration. Significant bidirectional chiral inversion occurred after intravenous and oral administration of (+)‐ or (?)‐trantinterol. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated in vivo. The AUC0‐36 of (+)‐trantinterol after intravenous and oral dosing of (?)‐trantinterol were 16.6 ± 5.2 and 33.3 ± 16%, respectively of those of total [(+) + (?)] trantinterol. The AUC0‐36 of (?)‐trantinterol after intravenous and oral dosing of (+)‐trantinterol were 19.6 ± 8.8 and 37.9 ± 4.5%, respectively, of those of total [(?) + (+)] trantinterol. After intravenous administration of (+)‐ and (?)‐trantinterol the chiral inversion ratios of the two enantiomers were not significantly different and similar results were found for oral administration. The extent of chiral inversion after intravenous administration was apparently lower, indicating that the bidirectional chiral inversion was not only systemic but also presystemic. Chirality 25:934–938, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

20.

Background

Warfarin, a widely used anticoagulant, is a vitamin K antagonist impairing the activity of vitamin K-dependent Bone Gla Protein (BGP or Osteocalcin) and Matrix Gla Protein (MGP). Because dabigatran, a new anticoagulant, has no effect on vitamin K metabolism, the aim of this study was to compare the impact of warfarin and dabigatran administration on bone structure and vascular calcification.

Methods

Rats with normal renal function received for 6 weeks warfarin, dabigatran or placebo. Bone was evaluated immuno-histochemically and hystomorphometrically after double labelling with declomycin and calcein. Aorta and iliac arteries were examined histologically.

Results

Histomorphometric analysis of femur and vertebrae showed significantly decreased bone volume and increased trabecular separation in rats treated with warfarin. Vertebra analysis showed that the trabecular number was higher in dabigatran treated rats. Osteoblast activity and resorption parameters were similar among groups, except for maximum erosion depth, which was higher in warfarin treated rats, suggesting a higher osteoclastic activity. Therefore, warfarin treatment was also associated with higher bone formation rate/bone surface and activation frequency. Warfarin treatment may cause an increased bone turnover characterized by increased remodelling cycles, with stronger osteoclast activity compared to the other groups. There were no differences among experimental groups in calcium deposition either in aortic or iliac arteries.

Conclusions

These findings suggest for the first time that dabigatran has a better bone safety profile than warfarin, as warfarin treatment affects bone by reducing trabecular size and structure, increasing turnover and reducing mineralization. These differences could potentially result in a lower incidence of fractures in dabigatran treated patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号