首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thiol oxidase was purified from porcine kidney cortex by chromatography of detergent-solubilized plasma membranes on cysteinylsuccinamidopropyl-glass beads, hydroxyapatite, and Sephacryl S-200. The oxidase was purified 2600-fold; 28% recovery of activity was obtained. With glutathione as substrate, the apparent Km was 0.73 mM and the V max was a 4.4 U/mg protein. The reaction catalyzed was 2 RSH + O2----RSSR + H2O2, and superoxide production was not detected during the reaction. Other low molecular weight thiols, including cysteine, dithiothreitol, N-acetylcysteine, and cysteamine, were substrates for the oxidase; 2-mercaptoethanol, reductively denatured ribonuclease A, and chymotrypsinogen A were not substrates. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band corresponding to 70 kDa; gel filtration on a Sephacryl column produced a single elution of activity with a protein corresponding to 120 kDa, indicating that the functional form is a dimer. On a high-pressure gel permeation column the protein eluted at 70 kDa under dilute conditions but at greater than 200 kDa at high concentrations, indicating that the protein also aggregates into larger multimers. Activity was inhibited by copper chelators, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), H2O2, and N-ethylmaleimide, suggesting the presence of copper and a sulfhydryl group at the active site. Following treatment with metal chelators, enzyme activity was reconstituted with CuSO4, but not with FeSO4. The purified enzyme contained 1 mol copper per subunit which was undetectable by electron paramagnetic resonance, suggesting that the copper is in a binuclear complex.  相似文献   

2.
The regulation of purified glutathione S-transferase from rat liver microsomes was studied by examining the effects of various sulfhydryl reagents on enzyme activity with 1-chloro-2,4-dinitrobenzene as the substrate. Diamide (4 mM), cystamine (5 mM), and N-ethylmaleimide (1 mM) increased the microsomal glutathione S-transferase activity by 3-, 2-, and 10-fold, respectively, in absence of glutathione; glutathione disulfide had no effect. In presence of glutathione, microsomal glutathione S-transferase activity was increased 10-fold by diamide (0.5 mM), but the activation of the transferase by N-ethylmaleimide or cystamine was only slightly affected by presence of glutathione. The activation of microsomal glutathione S-transferase by diamide or cystamine was reversed by the addition of dithiothreitol. Glutathione disulfide increased microsomal glutathione S-transferase activity only when membrane-bound enzyme was used. These results indicate that microsomal glutathione S-transferase activity may be regulated by reversible thiol/disulfide exchange and that mixed disulfide formation of the microsomal glutathione S-transferase with glutathione disulfide may be catalyzed enzymatically in vivo.  相似文献   

3.
Purified beta toxin from Clostridium perfringens type C was inactivated by the oxidizing agents o-iodosobenzoate (OIBA), oxidized glutathione, and ferricyanide, and by the sulfhydryl group regents 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, iodoacetamide, and iodoacetic acid, causing loss of activity in various degrees depending on the concentration used. The activity of the toxin was not influenced by exposure to 1.0 mM of p-chloromercuribenzoate. The toxin treated by OIBA or DTNB was reactivated by incubation with 2-mercaptoethanol and dithiothreitol. The data suggest that beta toxin contains thiol groups which are essential for the activity.  相似文献   

4.
A sulfhydryl-oxidizing enzyme has been found in skin of young rats and a method for purifying the enzyme over 600-fold has been developed. Enzymatic activity was assayed either by its ability to oxidize dithiothreitol of by measuring its ability to renature reductively denatured ribonuclease A. Skin sulfhydryl oxidase catalyzed the oxidation of various thiols: dithiothreitol, dithioerythritol, D-penicillamine, and L-cysteine. Glutathione and 2-mercaptoethanol were very poor substrates for the enzyme. The enzyme also reactivated reductively denatured ribonuclease A, with neither the presence of a thiol nor prior reduction of the enzyme being necessary. The molecular weight of the enzyme was estimated to be 66 000 +/- 2000, and the isoelectric point was determined to be at pH 4.65. Alkylating reagents alone had some inhibiting effect on skin sulfhydryl oxidase; when the enzyme was preincubated with thiols which were substrates, inhibition by alkylating reagents was greatly increased. After preincubation with dithiothreitol, treatment of the enzyme with alkylating reagents or N-ethylmaleimide caused significant inhibition; preincubation with a poor substrate, reduced glutathione, did not enhance inhibition by alkylating reagents or N-ethylmaleimide.  相似文献   

5.
Lactate dehydrogenase (EC 1.1.1.27) and dithiothreitol (DTT) were coimmobilized on Sepharose activated with cyanogen bromide. It was demonstrated that addition of 10 mM DTT (but not 2-mercaptoethanol) during immobilization increased the enzyme specific activity 1.5-5-fold, depending on the initial extent of Sepharose activation by cyanogen bromide. The total activity increased two- to threefold. The lactate dehydrogenase preparations were rich in matrix-immobilized sulfhydryl groups (1.8-13.0 nmol per ml gel). The presence of DTT increased the stability of immobilized lactate dehydrogenase.  相似文献   

6.
The inhibition by some thiol reagents of partly purified mitochondrial monoamine oxidase (MAO) (EC 1.4.3.4) from rat liver was studied, and the molar content of sulfhydryl groups in the enzyme determined. Sodium nitroprusside and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) inhibited the enzyme, apparently reversibly, while sodium arsenite was not inhibitory. Concentrations of the respective inhibitors causing 50% inhibition after 15 min of preincubation with the enzyme at pH 7.0 and 37 degrees C are 5.80 times 10(-4) M and 4.35 times 10(-5) M. The thiol compounds cysteine, dithiothreitol, and 2-mercaptoethanol did not inhibit MAO. The average number of sulfhydryl groups per mole of enzyme, determined by reaction with DTNB, increased from 3.6 +/- 0.2 freely reacting sulfhydryl groups (n = 4) to 18.4 to total sulfhydryl groups (n = 2) on denaturation with 8 M urea.  相似文献   

7.
The polymerization of actin induced by dilution has previously been reported, where a 1000-fold molar excess of ATP over actin resulted when actin was diluted to 4.0 micrograms/ml in low salt buffer A (0.1 mM ATP, 0.1 mM CaCl2, 2 mM Tris-HCl, pH 8.0, 5 mM 2-mercaptoethanol, 1 mM NaN3). Filaments formed by the addition of ATP to a 1000-fold molar excess over actin in buffer B (0.1 mM CaCl2, 2 mM Tris-HCl, pH 8.0, 1 mM NaN3) were then separated by gel-filtration. When ATP was removed from these filaments using Dowex-1, depolymerization occurred. Thus, the reversible polymerization induced by the dilution of actin or by addition of ATP can be ascribed to the binding of ATP at the low affinity site of actin.  相似文献   

8.
Ikkai T  Kondo H 《IUBMB life》2000,49(1):77-79
The polymerization of actin induced by dilution has previously been reported, where a 1000-fold molar excess of ATP over actin resulted when actin was diluted to 4.0 microg/ml in low salt buffer A (0.1 mM ATP, 0.1 mM CaCl2, 2 mM Tris-HCl, pH 8.0, 5 mM 2-mercaptoethanol, 1 mM NaN3). Filaments formed by the addition of ATP to a 1000-fold molar excess over actin in buffer B (0.1 mM CaCl2, 2 mM Tris-HCl, pH 8.0, 1 mM NaN3) were then separated by gel-filtration. When ATP was removed from these filaments using Dowex-1, depolymerization occurred. Thus, the reversible polymerization induced by the dilution of actin or by addition of ATP can be ascribed to the binding of ATP at the low affinity site of actin.  相似文献   

9.
beta-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) was purified 145-fold from Mycobacterium phlei ATCC354 by ammonium sulphate fractionation and DEAE-cellulose chromatography. The pH optima for oxidation and reduction reactions were 8.4 and 6.8 respectively. The purified enzyme was specific for NAD, NADH, acetoacetate and D(-)-beta-hydroxybutyrate. Km values for DL-beta-hydroxybutyrate and NAD were 7.4 mM and 0.66 mM respectively. The enzyme was inactivated by mercurial thiol inhibitors and by heat, but could be protected by NADH, Ca2+ and partially by Mn2+. The enzyme did not require metal ions and was insensitive to EDTA, glutathione, dithiothreitol, beta-mercaptoethanol and cysteine.  相似文献   

10.
Unlike other beta-class eukaryotic DNA polymerases, the enzyme purified from the Novikoff hepatoma is inhibited by both sulfhydryl blocking agents N-ethylmaleimide (NEM) and p-hydroxymercuribenzoate (pHMB). The degree of sensitivity varies depending on the enzyme purity, pH of the reaction, and the presence of sulfhydryl reducing agents. Novikoff beta-polymerase activity is unaffected by the presence of 2-mercaptoethanol (2-Me) or dithiothreitol (DTT); however, the combination of 2-mercaptoethanol and NEM or pHMB acts to reverse the inhibition of the sulfhydryl blocking agent. The reversal of inhibition involves more than just a titration of NEM with 2-mercaptoethanol since a) the combination of these two reagents actually stimulates the DNA polymerase, and b) dithiothreitol did not reverse the inhibition. Binding of the polymerase to DNA did not affect the enzyme sensitivity to NEM.  相似文献   

11.
12.
The 73-kDa protease (73K protease) was purified from a clinical isolate of Serratia marcescens kums 3958. The purified protease appeared homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. The protease is active in a broad pH range with maximum activity at pH 7.5-8.0. The protease appeared to be a thiol protease, since it was inhibited by sulfhydryl reactive compounds such as p-chloromercuribenzoic acid, fluorescein mercuric acetate (FMA), iodoacetamide, and N-ethylmaleimide, and the protease activity was enhanced by various reducing agents such as cysteine, glutathione, 2-mercaptoethanol, and dithiothreitol. The protease contained 2 mol of free sulfhydryl residues per mol of protease. When the protease was reacted with FMA, a maximum of 2 mol of FMA per mol of enzyme was found reacted, based on fluorescence quenching in which the enzyme inactivation was paralleled linearly with the loss of both SH groups. This indicates possible equal involvement of the two thiol groups for the enzyme activity. The inactivation of the protease by FMA was partially restored by a dialysis in the presence of cysteine or dithiothreitol. The protease was not inhibited by high molecular weight kininogen but was inhibited by alpha 2-macroglobulin. The protease bound stoichiometrically to alpha 2-macroglobulin with 1:1 molar ratio and 25% activity remained constant even after the addition of 4 molar excess of alpha 2-macroglobulin. The protease extensively degraded IgG, IgA, fibronectin, fibrinogen, and alpha 1-protease inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of reagents that modify sulfur-containing amino acid residues in the phosphatidylethanolamine N-methyltransferase was studied in the isolated rat cardiac sarcolemma by employing S-adenosyl-L-[methyl-3H]methionine as a methyl donor. Dithiothreitol protected the sulfhydryl groups in the membrane and caused a concentration- and time-dependent increase of phospholipid N-methylation at three different catalytic sites. This stimulation was highest (9-fold) in the presence of 1 MM MgCl2 and 0.1 µM S-adenosyl-L-[methyl-3H]methionine at pH 8.0 (catalytic site 1), and was associated with an enhancement of Vmax without changes in Km for the methyl donor. Thiol glutathione was less stimulatory than dithiothreitol; glutathione disulfide inhibited the phosphatidylethanolamine N-methylation by 50%. The alkylating reagents, N-ethylmaleimide and methylmethanethiosulfonate, inhibited the N-methylation with IC5O of 6.9 and 14.1 µM, respectively; this inhibition was prevented by 1 mM dithiothreitol. These results indicate a critical role of sulfhydryl groups for the activity of the cardiac sarcolemmal phosphatidylethanolamine N-methyltransferase and suggest that this enzyme system in cardiac sarcolemma may be controlled by the glutathione/glutathione disulfide redox state in the cell.Abbreviations AdoMet S-Adenosyl-L-methionine - AdoHey S-adenosyl-L-homocysteine - DTNB 5,5dithiobis (2-nitrobenzoate) - NEM N-ethylmaleimide - MMTS methylmethanethiosulfonate - DTT dithiothreitol - EDTA Ethylenediaminetetraacetic acid - GSH glutathione - GSSG glutathione disulfide - PE phosphatidylethanolamine - PMME phosphatidyl-N-monomethylethamolamine - PDME phosphatidyl-N-dimethylethanolamine - PC phosphatidylcholine - NPL nonpolar lipids - SL sarcolemma  相似文献   

14.
Manganese superoxide dismutase (Mn-SOD) has been purified with a high yield (320 mg) from human liver (2 kg) and crystallized. Low-angle laser light scattering of the enzyme has shown that native enzyme is a tetrametic form. Four of the eight cysteine residues in the tetramer reacted with 5,5'-dithiobis(2-nitrobenzoic acid) or with iodoacetamide. The others were only reactive in protein heated with SDS or urea after reduction with dithiothreitol or 2-mercaptoethanol. The reactive sulfhydryl group was found to be located at Cys196 by amino acid sequence analysis of Nbs2-reactive peptides isolated by activated thiol-Sepharose covalent chromatography. Incubation of Mn-SOD in 1% SDS for 2 or 3 days at 25 degrees C or 5 min at 100 degrees C gave material showing two prominent components on polyacrylamide gel electrophoresis in the presence of 0.1% SDS. The major component had a molecular mass of 23 kDa; the other, 25 kDa. Reduction of the protein by dithiothreitol or 2-mercaptoethanol heated in SDS produced only the 25-kDa monomer species. Essentially, no thiol groups were detected in the 23-kDa form, in which two cysteine residues appear to have been oxidized to form an intrasubunit disulfide. This indicates that Cys196 has a reactive sulfhydryl and appears to be a likely candidate for a mixed disulfide formation in vivo.  相似文献   

15.
A highly sensitive microassay method and a microscale purification system were developed to isolate the residual acid beta-galactosidase in GM1-gangliosidosis fibroblasts. The sensitivity of the microassay system, composed of a 96-well microplate and a microplate fluorometer, was 100-fold higher than that of the conventional system and the response was linear in the pmole range. Acid beta-galactosidase was characterized as a thiol enzyme which was inactivated by a mercuric compound. This enzyme was completely adsorbed on an Hg-agarose column and was easily eluted from the column by 10 mM 2-mercaptoethanol. The microscale purification system using Con A-Sepharose, PAT-Sepharose, and Hg-agarose column chromatography achieved 565- and 7,970-fold purifications of acid beta-galactosidase with an overall yields of 44% and 45% from normal and GM1-gangliosidosis fibroblasts, respectively. The purified enzyme fractions did not contain any other lysosomal enzyme activities except for a small amount of beta-N-acetylhexosaminidase activity.  相似文献   

16.
A procedure for the isolation of a sulfhydryl oxidase from an Aspergillus niger cell suspension involved three major steps and yielded enzyme preparations exhibiting a single but diffuse protein-containing zone when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a subunit molecular weight estimated to be 53,000. Sedimentation equilibrium experiments indicated a native molecular weight of 106,000. Analyses for sugar residues showed that the enzyme is a glycoprotein, containing 20.3% neutral hexose and 1.9% aminohexose by weight. This enzyme catalyzed the conversion of reduced glutathione (GSH) to its disulfide form, with concomitant consumption of O2 and release of H2O2. The ratio of GSH consumed to H2O2 produced was determined to be 2:1. At 25 degrees C, the optimum pH for the oxidation of GSH was 5.5. Under these conditions, the enzyme had a Michaelis constant of 0.3 mM for GSH. Other low molecular weight thiol compounds (cysteine, dithiothreitol, and 2-mercaptoethanol) were also oxidized, but the Michaelis constants for these substrates were substantially higher than that for GSH under identical conditions of temperature and pH. The rate of reactivation of reductively denatured ribonuclease A was enhanced by the presence of sulfhydryl oxidase, indicating that the latter is capable of oxidizing protein-associated thiol groups. The UV-visible spectrum of sulfhydryl oxidase solution had absorbance maxima at 274, 364.5, and 442.5 nm and was otherwise characteristic of the spectra of known flavoproteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Large errors in pH measurements were found with most types of reference electrodes when used in buffers containing sulfhydryl reagents (either 1–5 mm 2-mercaptoethanol or 5–10 mm dithiothreitol), or when electrodes were used in dilute buffers (≤25 mm) without sulfhydryl reagents. These errors which are confined to the reference electrodes depend on its history, although new electrodes exhibit errors in sulfhydryl solutions. The errors appear independent of pH and buffer ions. Although high ionic strengths reduce dilution errors, sulfhydryl-induced errors persist. Numerous tests have been unsuccessful in clarifying the molecular sources of these errors. Sulfhydryl effects are usually discernible by the downward pH drift, whereas errors in dilute buffer are frequently stable. Due to the prevalence and magnitude of these errors, increased precautions in pH measurements are needed, as suggested.  相似文献   

18.
Lactate dehydrogenase (EC 1.1.1.27) and dithiothreitol (DTT) were coimmobilized on Sepharose activated with cyanogen bromide. It was demonstrated that the addition of 10 mM DTT (but not 2-mercaptoethanol) during immobilization increased the enzyme specific activity 1.5–5-fold depending on the initial extent of Sepharose activation by cyanogen bromide. The total activity increased two- to threefold. The lactate dehydrogenase preparations were rich in matrix-immobilized sulfhydryl groups (1.8–13.0 nmol per ml gel). The presence of DTT increased the stability of immobilized lactate dehydrogenase.  相似文献   

19.
Immunofluorescent studies showed that antibodies prepared against bovine milk sulfhydryl oxidase reacted with acinar cells of porcine and bovine pancreas. A close inspection of the specific location within bovine pancreatic cells revealed that the zymogen granules, themselves, bound the fluorescent antibody. Bovine pancreatic tissue was homogenized in 0.3 M sucrose, then separated into the zymogen granule fraction by differential centrifugation. The intact zymogen granules were immunofluorescent positive when incubated with antibodies to bovine milk sulfhydryl oxidase, and glutathione-oxidizing activity was detected under standard assay conditions. Pancreatic sulfhydryl oxidase was purified from the zymogen fraction by precipitation with 50% saturated ammonium sulfate, followed by Sepharose CL-6B column chromatography. Active fractions were pooled and subjected to covalent affinity chromatography on cysteinylsuccinamidopropyl-glass using 2 mM glutathione as eluant at 37 degrees C. The specific activity of bovine pancreatic sulfhydryl oxidase thus isolated was 10-20 units/mg protein using 0.8 mM glutathione as substrate. Ouchterlony double-diffusion studies showed that antibody directed against the purified bovine milk enzyme reacted identically with pancreatic sulfhydryl oxidase. The antibody also immunoprecipitated glutathione-oxidizing activity from crude pancreatic homogenates. Western blotting analysis indicated a 90,000 Mr antigen-reactive band in both bovine milk and pancreatic fractions while sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single silver-staining protein with an apparent Mr 300,000. Thus, we believe that sulfhydryl oxidase may exist in an aggregated molecular form. Bovine pancreatic sulfhydryl oxidase catalyzes the oxidation of low-molecular-weight thiols such as glutathione, N-acetyl-L-cysteine, and glycylglycyl-L-cysteine, as well as that of a high-molecular-weight protein substrate, reductively denatured pancreatic ribonuclease A.  相似文献   

20.
Partially purified tryptophan-5-monooxygenase (L-tryptophan, tetrahydropteridine: oxygen oxidoreductase (5-hydroxylating) EC 1.14.16.4)from bovine pineal gland was activated by preincubation with sulfhydryl agents such as dithiothreitol, L-cysteine, cysteamine, L-cysteine ethylester, N-acetyl-L-cysteine, 2-mercaptoethanol and reduced glutathione, at alkaline pH (optimum pH equals 8.5). Dithiothreitol was the most effective of these, leading to approximately 50-fold activation of the enzyme after preincubation. Fe-2+ or other reducing agents such as borohydride, dithionite and ascorbate facilitated the velocity of the activation in the presence of sulfhydryl agents. In the absence of sulfhydryl agents, no activation was observed even in the presence of Fe-2+ or other reducing agents, suggesting an obligatory role or sulhydryl agents during the activation. The relative velocity and full extent of the activation were dependent on the concentrations of both the sulfhydryl agent and the enzyme in the activation mixture. The kinetic analysis of the activation indicated that the sulfhydryl agent reacts with more than 2 sites in the enzyme; one type of site is reduced by sulfhydryl agents, Fe-2+ or other reducing agents and the other specifically modified by a sulfhydryl agent. The activated enzyme did not require any exogenous Fe-2+ for its catalytic activity, but some roles of iron maybe exist in its catalytic reaction. The optimum pH for catalytic reaction of the activated enzyme was approximately 6.5. The apparent Km for L-tryptophan and pteridine cofactor, tetrahydro-pteridine (2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropterin), of the activated enzyme were 30 and 35 muM respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号