首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Rat liver protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds. We have developed an efficient method for its overproduction in Escherichia coli. Using a T7 RNA polymerase expression system, isolated yields of 15-30 mg/liter of recombinant rat PDI are readily obtained. Convenient purification of the enzyme from E. coli lysates involves ion-exchange (DEAE) chromatography combined with zinc chelate chromatography. The recombinant PDI shows catalytic activity identical to that of PDI isolated from bovine liver in both the reduction of insulin and the oxidative folding of ribonuclease A. The enzyme is expressed in E. coli as a soluble, cytoplasmic protein. After complete reduction and denaturation in 6 M guanidinium hydrochloride, PDI regains complete activity within 3 min after removal of the denaturant, implying that disulfide bonds are not essential for the maintenance of PDI tertiary structure. Both the protein isolated from E. coli and the protein isolated from liver contained free cysteine residues (1.8 +/- 0.2 and 1.4 +/- 0.3 SH/monomer, respectively).  相似文献   

2.
Production of eukaryotic proteins with multiple disulfide bonds in the Escherichia coli periplasm often encounters difficulty in obtaining soluble products with native structure. Human nerve growth factor beta (NGF) contains three disulfide bonds between nonconsecutive cysteine residues and forms insoluble aggregates when expressed in E. coli. We now report that overexpression of Dsb proteins known to catalyze formation and isomerization of disulfide bonds can substantially enhance periplasmic production of NGF. A set of pACYC184-based plasmids that permit dsb expression under the araB promoter were introduced into cells carrying a compatible plasmid that expresses NGF. The efficiency of periplasmic production of NGF fused to the OmpT signal peptide was strikingly improved by coexpression of DsbCD or DsbABCD proteins (up to 80% of total NGF produced). Coexpression of DsbAB was hardly effective, whereas that of DsbAC increased the total yield but not the periplasmic expression. These results suggest synergistic roles of DsbC and DsbD in disulfide isomerization that appear to become limiting upon NGF production. Furthermore, recombinant NGF produced with excess DsbCD (or DsbABCD) was biologically active judged by the neurite outgrowth assay using rat PC12 cells.  相似文献   

3.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

4.
5.
Protein disulfide isomerase: the structure of oxidative folding   总被引:1,自引:0,他引:1  
Cellular functions hinge on the ability of proteins to adopt their correct folds, and misfolded proteins can lead to disease. Here, we focus on the proteins that catalyze disulfide bond formation, a step in the oxidative folding pathway that takes place in specialized cellular compartments. In the endoplasmic reticulum of eukaryotes, disulfide formation is catalyzed by protein disulfide isomerase (PDI); by contrast, prokaryotes produce a family of disulfide bond (Dsb) proteins, which together achieve an equivalent outcome in the bacterial periplasm. The recent crystal structure of yeast PDI has increased our understanding of the function and mechanism of PDI. Comparison of the structure of yeast PDI with those of bacterial DsbC and DsbG reveals some similarities but also striking differences that suggest directions for future research aimed at unraveling the catalytic mechanism of disulfide bond formation in the cell.  相似文献   

6.
An expression system for trypsin   总被引:4,自引:0,他引:4  
  相似文献   

7.
Woycechowsky KJ  Raines RT 《Biochemistry》2003,42(18):5387-5394
Protein disulfide isomerase (PDI) utilizes the active site sequence Cys-Gly-His-Cys (CGHC; E degrees ' = -180 mV) to effect thiol-disulfide interchange during oxidative protein folding. Here, the Cys-Gly-Cys-NH(2) (CGC) peptide is shown to have a disulfide reduction potential (E degrees ' = -167 mV) that is close to that of PDI. This peptide has a thiol acid dissociation constant (pK(a) = 8.7) that is lower than that of glutathione. These attributes endow the CGC peptide with substantial disulfide isomerization activity. Escherichia coli thioredoxin (Trx) utilizes the active site sequence Cys-Gly-Pro-Cys (CGPC; E degrees ' = -270 mV) to effect disulfide reduction. Removal of the proline residue from the Trx active site yields a CGC active site with a greatly destabilized disulfide bond (E degrees ' >or= -200 mV). The DeltaP34 variant retains high conformational stability and remains a substrate for thioredoxin reductase. In contrast to the reduced form of the wild-type enzyme, the reduced form of DeltaP34 Trx has disulfide isomerization activity, which is 25-fold greater than that of the CGC peptide. Thus, the rational deletion of an active site residue can bestow a new and desirable function upon an enzyme. Moreover, a CXC motif, in both a peptide and a protein, provides functional mimicry of PDI.  相似文献   

8.
Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa protein with five overlapping disulfide bonds. We show that reduced RBI can be refolded quantitatively in glutathione redox buffers in vitro and spontaneously adopts the single correct conformation out of 750 possible species with five disulfide bonds. Under oxidizing redox conditions, however, RBI folding is hampered by accumulation of a large number of intermediates with non-native disulfide bonds, while a surprisingly low number of intermediates accumulates under optimal or reducing redox conditions. DsbC catalyzes folding of RBI under all redox conditions in vitro, but is particularly efficient in rearranging buried, non-native disulfide bonds formed under oxidizing conditions. In contrast, the influence of DsbA on the refolding reaction is essentially restricted to reducing redox conditions where disulfide formation is rate limiting. The effects of DsbA and DsbC on folding of RBI in E.coli are very similar to those observed in vitro. Whereas overexpression of DsbA has no effect on the amount of correctly folded RBI, co-expression of DsbC enhanced the efficiency of RBI folding in the periplasm of E.coli about 14-fold. Addition of reduced glutathione to the growth medium together with DsbC overexpression further increased the folding yield of RBI in vivo to 26-fold. This shows that DsbC is the bacterial enzyme of choice for improving the periplasmic folding yields of proteins with very complex disulfide bond patterns.  相似文献   

9.
Selective inhibition of protein disulfide isomerase by estrogens   总被引:4,自引:0,他引:4  
Protein disulfide isomerase (PDI) is a multifunctional microsomal enzyme that participates in the formation of protein disulfide bonds. PDI catalyzes the reduction of protein disulfide bonds in the presence of excess reduced glutathione and has been implicated in the reductive degradation of insulin; E. coli thioredoxin is homologous to two regions in PDI and can also degrade insulin. PDI activity, measured by 125I-insulin degradation or reactivation of randomly oxidized RNase in the presence of reduced glutathione, is non-competitively inhibited by estrogens; half-maximal inhibition was observed at approximately 100 nM estrogen. Other steroid hormones at 1 microM had little or no effect. PDI segment 120-163 (which corresponds to exon 3 of the PDI gene) and 182-230 have significant similarity with estrogen receptor segments 350-392 and 304-349, respectively, located in the estrogen binding domain but not with the steroid domains of the progesterone and glucocorticoid receptors or with thioredoxin, which is insensitive to estrogens. We propose the hypothesis that enzymes can acquire sensitivity to a hormone via exon shuffling to the enzyme gene from the DNA region coding for the hormone binding domain of the hormone's receptor.  相似文献   

10.
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.  相似文献   

11.
Renaturation of two enzymes lacking disulfide bonds, citrate synthase (CS), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and another protein containing disulfide bonds, lysozyme (LZM), were studied in order to dissect the possible chaperone function from the isomerase function of yeast protein disulfide isomerase (PDI). Our findings suggest no independent chaperone activity of yeast PDI with respect to the two enzymes lacking disulfide bonds, GAPDH and CS, since neither of these enzymes required PDI for renaturation. In contrast, a high level of renaturation of LZM was observed in the presence of PDI. Renaturation of LZM involved formation and rearrangement of disulfide bonds. Additional studies using LZM as a substrate were done to examine the role of cysteine residues in the two active sites of PDI. Studies with a series of cysteine to serine mutants and truncation mutants of yeast PDI revealed that the two active sites of PDI were not equal in activity. An intramolecular disulfide bond in at least one active site of PDI was required for the oxidation of reduced LZM. The first cysteine in each active site was necessary for disulfide bond rearrangement, i.e., isomerization, in LZM, while the second cysteine was not.  相似文献   

12.
Recombinant human protein disulfide isomerase (PDI) was expressed in vivo in Escherichia coli using a non-optimised gene sequence and an optimised sequence with four 5' codons substituted by synonymous codons that take less time to translate. The optimisation resulted in a 2-fold increase of total PDI concentration and by successive optimisation with expression at low temperature in a 10-fold increase of the amount of soluble PDI in comparison with the original wild-type construct. The improvement can be due to a faster clearing of the ribosome binding site on the mRNA, elevating the translation initiation rate and resulting in higher ribosome loading and better ribosome protection of the PDI mRNA against endonucleolytic cleavage by RNase. This hypothesis was supported by a novel computer simulation model of E. coli translational ribosome traffic based upon the stochastic Gillespie algorithm. The study indicates the applicability of such models in optimisation of recombinant protein sequences.  相似文献   

13.
When brain-derived neurotrophic factor (BDNF) is produced in the Escherichia coli periplasm, insoluble BDNF proteins with low biological activity and having mismatched disulfide linkages are formed. The coexpression of cysteine oxidoreductases (DsbA and DsbC) and membrane-bound enzymes (DsbB and DsbD), which play an important role in the formation of disulfide bonds in the periplasm, was investigated to improve the production of soluble and biologically active BDNF. The expression levels of Dsb proteins changed when the growth medium and the Dsb expression plasmids were changed, and the production rate of soluble BDNF was almost proportional to the expression level of DsbC protein with disulfide isomerase activity in the case of a low expression level of BDNF. The rate of soluble BDNF production with coexpression of DsbABCD was as high as 35%. These results show that coexpression of BDNF and Dsb proteins can effectively increase the production of soluble and biologically active BDNF.  相似文献   

14.
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates.  相似文献   

15.
In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding. This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation of an intramolecular disulfide bond between fluorophore-containing and quencher-containing peptide segments results in a redox-dependent fluorescence signal. We find a model compound of this type to be a highly sensitive substrate for PDI both in oxidation and in reduction assays under steady state conditions. These aspects should make substrates of this type generally applicable for assaying PDI and other thiol-disulfide exchange enzymes.  相似文献   

16.
 用质粒pUC18在大肠杆菌中表达人蛋白质二硫键异构酶高音,王志珍(中国科学院生物物理研究所,生物大分子国家重点实验室,北京100101)蛋白质二硫键异构酶(proteindisulfideisomerase,PDI)催化蛋白质分子内天然二硫键的形成,...  相似文献   

17.
18.
Stafford SJ  Lund PA 《FEBS letters》2000,466(2-3):317-322
Protein disulfide isomerase (PDI) exhibits both an oxido-reductase and an isomerase activity on proteins containing cysteine residues. These activities arise from two active sites, both of which contain pairs of redox active cysteines. We have developed two simple in vivo assays for these activities of PDI, based on the demonstration that PDI can complement both a dsbA mutation and a dsbC mutation when expressed to the periplasm of Escherichia coli. We constructed a variety of mutants in and around the active sites of PDI and analysed them using these complementation assays. Our analysis showed that the active site amino acid residues have a major role in determining the activities exhibited by PDI, particularly the N-terminal cysteine of the N-terminal active site. The roles of the histidine residue at position 38 and the glutamic acid residue at position 30 were also studied using these assays. The results show that these two in vivo assays should be useful for rapid screening of mutants in PDI prior to purification and detailed biochemical analysis.  相似文献   

19.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

20.
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号