首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5′ end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5′ end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.  相似文献   

2.
3.
The Drosophila RNase III enzyme Dicer-2 processes double-stranded RNA (dsRNA) precursors into small interfering RNAs (siRNAs). It also interacts with the siRNA product and R2D2 protein to facilitate the assembly of an RNA-induced silencing complex (RISC) that mediates RNA interference. Here, we characterized six independent missense mutations in the dicer-2 gene. Four mutations (P8S, L188F, R269W, and P365L) in the DExH helicase domain reduced dsRNA processing activity. Two mutations were located within an RNase III domain. P1496L caused a loss of dsRNA processing activity comparable to a null dicer-2 mutation. A1453T strongly reduced both dsRNA processing and RISC activity, and decreased the levels of Dicer-2 and R2D2 proteins, suggesting that this mutation destabilizes Dicer-2. We also found that the carboxyl-terminal region of R2D2 is essential for Dicer-2 binding. These results provide further insight into the structure-function relationship of Dicer, which plays a critical role in the siRNA pathway.  相似文献   

4.
5.
Short interfering RNAs (siRNAs) guide mRNA cleavage during RNA interference (RNAi). Only one siRNA strand assembles into the RNA-induced silencing complex (RISC), with preference given to the strand whose 5' terminus has lower base-pairing stability. In Drosophila, Dcr-2/R2D2 processes siRNAs from longer double-stranded RNAs (dsRNAs) and also nucleates RISC assembly, suggesting that nascent siRNAs could remain bound to Dcr-2/R2D2. In vitro, Dcr-2/R2D2 senses base-pairing asymmetry of synthetic siRNAs and dictates strand selection by asymmetric binding to the duplex ends. During dsRNA processing, Dicer (Dcr) liberates siRNAs from dsRNA ends in a manner dictated by asymmetric enzyme-substrate interactions. Because Dcr-2/R2D2 is unlikely to sense base-pairing asymmetry of an siRNA that is embedded within a precursor, it is not clear whether processed siRNAs strictly follow the thermodynamic asymmetry rules or whether processing polarity can affect strand selection. We use a Drosophila in vitro system in which defined siRNAs with known asymmetry can be generated from longer dsRNA precursors. These dsRNAs permit processing specifically from either the 5' or the 3' end of the thermodynamically favored strand of the incipient siRNA. Combined dsRNA-processing/mRNA-cleavage assays indicate that siRNA strand selection is independent of dsRNA processing polarity during Drosophila RISC assembly in vitro.  相似文献   

6.
7.
Short interfering RNA (siRNA) molecules with good gene-silencing properties are needed for drug development based on RNA interference (RNAi). An initial step in RNAi is the activation of the RNA-induced silencing complex RISC, which requires degradation of the sense strand of the siRNA duplex. Although various chemical modifications have been introduced to the antisense strand, modifications to the Argonaute2 (Ago2) cleavage site in the sense strand have, so far, not been described in detail. In this work, novel 2'-F-purine modifications were introduced to siRNAs, and their biological efficacies were tested in cells stably expressing human tartrate-resistant acid phosphatase (TRACP). A validated siRNA that contains both purine and pyrimidine nucleotides at the putative Ago2 cleavage site was chemically modified to contain all possible combinations of 2'-fluorinated 2'-deoxypurines and/or 2'-deoxypyrimidines in the antisense and/or sense strands. The capacity of 2'-F-modified siRNAs to knock down their target mRNA and protein was studied, together with monitoring siRNA toxicity. All 2'-F-modified siRNAs resulted in target knockdown at nanomolar concentrations, despite their high thermal stability. These experiments provide the first evidence that RISC activation not only allows 2'-F modifications at the sense-strand cleavage site, but also increase the biological efficacy of modified siRNAs in vitro.  相似文献   

8.
Rational siRNA design for RNA interference   总被引:166,自引:0,他引:166  
Short-interfering RNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi). RNAi involves multiple RNA-protein interactions characterized by four major steps: assembly of siRNA with the RNA-induced silencing complex (RISC), activation of the RISC, target recognition and target cleavage. These interactions may bias strand selection during siRNA-RISC assembly and activation, and contribute to the overall efficiency of RNAi. To identify siRNA-specific features likely to contribute to efficient processing at each step, we performed a systematic analysis of 180 siRNAs targeting the mRNA of two genes. Eight characteristics associated with siRNA functionality were identified: low G/C content, a bias towards low internal stability at the sense strand 3'-terminus, lack of inverted repeats, and sense strand base preferences (positions 3, 10, 13 and 19). Further analyses revealed that application of an algorithm incorporating all eight criteria significantly improves potent siRNA selection. This highlights the utility of rational design for selecting potent siRNAs and facilitating functional gene knockdown studies.  相似文献   

9.
10.
11.
Stierlé V  Laigle A  Jollès B 《Biochimie》2007,89(8):1033-1036
Effective silencing of MDR1, one of the genes involved in the multidrug resistance phenotype, can be achieved by the use of an efficient siRNA transfected into the doxorubicin-selected MCF7-R human cell line, alone or combined with a moderately efficient siRNA. On the contrary, there is no MDR1 silencing when it is co-transfected with a control siRNA that does not target the human genome. This results from the limited amount of RISC (RNA-Induced Silencing Complex) in human cells, leading to competition between siRNAs. In the case where the energy difference between the extremities of one of the siRNAs is largely superior to that of the other one, competition between the siRNAs appear to be favorable for the former. It is suggested that designing efficient siRNAs from thermodynamic characteristics is favored when siRNAs are incorporated into the RISC Loading Complex (RLC) rather than directly loaded into RISC.  相似文献   

12.
Chu CY  Rana TM 《RNA (New York, N.Y.)》2008,14(9):1714-1719
RNA interference (RNAi) is a gene-silencing mechanism by which a ribonucleoprotein complex, the RNA-induced silencing complex (RISC) and a double-stranded (ds) short-interfering RNA (siRNA), targets a complementary mRNA for site-specific cleavage and subsequent degradation. While longer dsRNA are endogenously processed into 21- to 24-nucleotide (nt) siRNAs or miRNAs to induce gene silencing, RNAi studies in human cells typically use synthetic 19- to 20-nt siRNA duplexes with 2-nt overhangs at the 3′-end of both strands. Here, we report that systematic synthesis and analysis of siRNAs with deletions at the passenger and/or guide strand revealed a short RNAi trigger, 16-nt siRNA, which induces potent RNAi in human cells. Our results indicate that the minimal requirement for dsRNA to trigger RNAi is an ~42 Å A-form helix with ~1.5 helical turns. The 16-nt siRNA more effectively knocked down mRNA and protein levels than 19-nt siRNA when targeting the endogenous CDK9 gene, suggesting that 16-nt siRNA is a more potent RNAi trigger. In vitro kinetic analysis of RNA-induced silencing complex (RISC) programmed in HeLa cells indicates that 16-nt siRNA has a higher RISC-loading capacity than 19-nt siRNA. These results suggest that RISC assembly and activation during RNAi does not necessarily require a 19-nt duplex siRNA and that 16-nt duplexes can be designed as more potent triggers to induce RNAi.  相似文献   

13.
Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2′-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2′-O-modified siRNA activities were often decreased by modification, since the bulky 2′-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2′-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2′-O-MDTM siRNAs modified at the 5′-end side including 5′-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2′-O-methyl (2′-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2′-O-MDTM modifications. Our results indicate that 2′-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA.  相似文献   

14.
The structural flexibility of RNA interference (RNAi)-triggering nucleic acids suggests that the design of unconventional RNAi trigger structures with novel features is possible. Here, we report a cross-shaped RNA duplex structure, termed quadruple interfering RNA (qiRNA), with multiple target gene silencing activity. qiRNA triggers the simultaneous down-regulation of four cellular target genes via an RNAi mechanism. In addition, qiRNA shows enhanced intracellular delivery and target gene silencing over conventional siRNA when complexed with jetPEI, a linear polyethyleneimine (PEI). We also show that the long antisense strand of qiRNA is incorporated intact into an RNA-induced silencing complex (RISC). This novel RNA scaffold further expands the repertoire of RNAi-triggering molecular structures and could be used in the development of therapeutics for various diseases including viral infections and cancer.  相似文献   

15.
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.  相似文献   

16.
The most widely accepted mechanism of RNAi-silencing involves the RNA-induced silencing complex (RISC) liberating the active antisense strand from the sense strand of an siRNA duplex to form an active RISC-antisense complex. This involves cleaving the sense strand between positions 9 and 10 from the 5' end of the strand prior to dissociation. Destabilizing modifications near the center of the duplex in some cases can enhance the efficacy of the resultant construct and may trigger an alternative mechanism through which the sense strand is removed. By introducing alkyl spacers of varying lengths near or within the sense strand's cleavage site, this study illustrates that siRNAs, in most cases, retained potent RNAi-silencing activity. Our results highlight that by substituting the scissile phosphodiester linkage on the sense strand with non-cleavable alkyl chains provides a novel and alternative method to destabilize the central region of siRNAs.  相似文献   

17.
Small-interfering RNAs (siRNAs) execute specific cellular gene silencing by exploiting the endogenous RNA interference (RNAi) pathway. Therefore, excess amounts of siRNAs can saturate cellular RNAi machineries. Indeed, some siRNAs saturate the RNA-induced silencing complex (RISC) and competitively inhibit silencing by other siRNAs. However, the molecular feature of siRNAs that specifies competition potency has been undetermined. While previous reports suggested a correlation between the competition potency and silencing efficiency of siRNAs, we found that the silencing efficiency was insufficient to explain the competition potency. Instead, we show that the nucleotide sequence of the 5′-half of the guide strand determines the competition potency of an siRNA. Our finding provides important information for understanding the mechanistic basis of competition in combinatorial RNAi treatment.  相似文献   

18.
19.
The thermodynamic asymmetry of siRNA duplexes determines their silencing activity. Favorable asymmetry can be achieved by incorporation of mismatches into the 3' part of the sense strand, providing fork-siRNAs, which exhibit higher silencing activity and higher sensitivity to nucleases. Recently, we found that selective 2'-O-methyl modifications of the nuclease-sensitive sites of siRNA significantly improve its nuclease resistance without substantial loss of silencing activity. Here, we examined the impact of nucleotide mismatches and the number and location of 2'-O-methyl modifications on the silencing activity and nuclease resistance of anti-MDR1 siRNAs. We found that both nonmodified and selectively modified fork-siRNAs with 4 mismatches at the 3' end of the sense strand suppress the expression of target gene at lower effective concentrations than the parent siRNAs with classical duplex design. The selective modification of nuclease-sensitive sites significantly improved the stability of fork-siRNAs in the presence of serum. The selectively modified fork-siRNA duplexes provided inhibitory effect over a period of 12 days posttransfection, whereas the gene silencing activity of the nonmodified analogs expired within 6 days. Thus, selective chemical modifications and structural alteration of siRNA duplexes improve their silencing properties and significantly prolong the duration of their silencing effect.  相似文献   

20.
RNA interference (RNAi) is a process by which short interfering RNAs (siRNAs) direct the degradation of complementary single-strand RNAs. In this study, we investigated the effects of full-strand phosphorothioate (PS) backbone and 2'-O-methyl (2'-OMe) sugar modifications on RNAi-mediated silencing. In contrast to previous reports, we have identified active siRNA duplexes containing full 2'-OMe-modified sense strands that display comparable activity to the unmodified analog of similar sequence. The structure of these modified siRNAs is the predominant determinant of their activity, with sequence and backbone composition being secondary. We further show, by using biotin-tagged siRNAs and affinity-tagged hAgo2/eIF2C2, that activity of siRNA duplexes containing full 2'-OMe substitutions in the sense strand is mediated by the RNA-induced silencing complex (RISC) and that strand-specific loading (or binding) to hAgo2 may be modulated through selective incorporation of these modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号