首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We have determined the ability of two well-characterized eukaryotic homing endonucleases, I-PpoI from the myxomycete Physarum polycephalum and I-CreI from the green alga Chlamydomonas reinhardtii, to generate site-specific DNA double-strand breaks in human cells. These 18-kDa proteins cleave highly conserved 15- or 24-bp rDNA homing sites in their respective hosts to generate homogeneous 4-base, 3' ends that initiate target intron transposition or "homing." We show that both endonucleases can be expressed in human cells and can generate site-specific DNA double-strand breaks in 28S rDNA and homing site plasmids. These endonuclease-induced breaks can be repaired in vivo, although break repair is mutagenic with the frequent generation of short deletions or insertions. I-PpoI and I-CreI should be useful for analyzing DNA double-strand break repair in human cells and rDNA.  相似文献   

2.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):289-302
Form II PM2 DNA, which contained bleomycin-mediated single-strand breaks, was purified and treated with the extracellular endonuclease from Alteromonas BAL 31. This enzyme cleaves the phosphodiester backbone opposite a single-strand break to yield a double-strand break. The locations of these double-strand breaks were determined relative to the cleavage sites produced by the restriction enzyme HindIII. The experimental procedure was as follows. Form I PM2 DNA was treated with bleomycin to produce alkali-labile bonds. These were hydrolyzed by alkali treatment and the DNA, now containing single-strand breaks, was purified and treated with the BAL 31 enzyme and the HindIII enzyme to determine the positions of the original alkali-labile bonds. It was found that the single-strand breaks and alkali-labile bonds were introduced at preferred sites on the PM2 genome, since electrophoretic analyses of the DNA after the HindIII digestion revealed DNA bands of discrete sizes. The molecular weights of the DNA fragments produced by these treatments indicate that single-strand breaks and alkali-labile bonds occur at the same sites as those previously determined for direct double-strand scissions introduced by bleomycin at neutral pH. Some of the specific sites of double-strand scissions mediated by bleomycin at neutral pH (Lloyd et al., 1978b) are also shown here to be relatively more reactive than other sites when the DNA contains superhelical turns.  相似文献   

3.
Yang N  Galick H  Wallace SS 《DNA Repair》2004,3(10):1323-1334
A significant proportion of cellular DNA damages induced by ionizing radiation are produced in clusters, also called multiply damaged sites. It has been demonstrated by in vitro studies and in bacteria that clustered damage sites can be converted to lethal double strand breaks by oxidative DNA glycosylases during attempted base excision repair. To determine whether DNA glycosylases could produce double strand breaks at radiation-induced clustered damages in human cells, stably transformed human lymphoblastoid TK6 cells that inducibly overexpress the oxidative DNA glycosylases/AP lyases, hNTH1 and hOGG1, were assessed for their radiation responses, including survival, mutation induction and the enzymatic production of double strand breaks post-irradiation. We found that additional double strand breaks were generated during post-irradiation incubation in uninduced TK6 control cells. Moreover, overproduction of either DNA glycosylase resulted in significantly increased double strand break formation, which correlated with an elevated sensitivity to the cytotoxic and mutagenic effects of ionizing radiation. These data show that attempted repair of radiation damage, presumably at clustered damage sites, by the oxidative DNA glycosylases can lead to the formation of potentially lethal and mutagenic double strand breaks in human cells.  相似文献   

4.
Previous work showed that treatment of plateau-phase Chinese hamster ovary cells with the radiomimetic double-strand cleaving agent bleomycin induced very small deletions as well as interchromosomal reciprocal translocations, both of which could be ascribed to errors in end joining of DNA double-strand breaks. In an attempt to assess the possible role of TP53 in suppressing such repair errors, bleomycin-induced mutagenesis at the HPRT locus was examined in immortalized 184B5 human mammary epithelial cells (TP53(+)), and in a TP53-defective derivative, 184B5-E6tfxc6. For both cell lines, the most frequent bleomycin-induced mutations were base substitutions, with no apparent targeting to major bleomycin lesions. However, both lines also sustained single-base deletions that were targeted to expected sites of double-strand breaks, suggesting that they arose by end-joining repair of the breaks. Surprisingly, only a few large deletions or rearrangements, and no interchromosomal events involving the HPRT locus were detected among the mutants. The results suggest that in both cell lines, errors in double-strand break repair resulting in heritable large deletions and rearrangements are rare. Spectral karyotyping of bleomycin-treated 184B5 cells showed that a significant number of translocations were present shortly after bleomycin exposure, but their frequency decreased upon continued culture of the cells. Thus, for these cells, the lack of induced interchromosomal rearrangements can be explained in part by selection against such events as the cells proliferate.  相似文献   

5.
L F Povirk  Y H Han  R J Steighner 《Biochemistry》1989,28(14):5808-5814
In order to examine the structure of bleomycin-induced DNA double-strand breaks, defined-sequence DNA was labeled in each strand at a single restriction site and treated with bleomycin. Various double-stranded fragments resulting from bleomycin-induced double-strand breaks were isolated, denatured, and run on sequencing gels to determine the sites of cleavage in each strand. For virtually every double-strand break, the cleavage site in one strand was a pyrimidine in a G-Py sequence, reflecting a specificity similar to that of bleomycin-induced single-strand cleavage. However, the cleavage site in the complementary strand was seldom a G-Py sequence, and was usually a site where single-strand cleavage was infrequent. When the sequence at the double-strand break was G-Py-Py', the break at Py was usually accompanied by a break at the base directly opposite Py, resulting in blunt ends. When the sequence was G-Py-Pu, the break at Py was usually accompanied by a break at the base opposite Pu, resulting in single-base 5' extensions. Double-strand breaks with 3' extensions, such as would result from cleavage of two C residues in a self-complementary G-C sequence, were conspicuously absent. These data provide further evidence that bleomycin-induced double-strand breaks do not result from coincidence of independent site-specific single-strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ionizing radiation and radiomimetic drugs such as bleomycin, calichieamycin, neocarzinostatin chromophore, and other synthetic agents can produce both single and double strand breaks in DNA. The ability to study the structure-activity relationships of single and double-strand break repair, lethality, and mutagenesis in vivo is complicated by the numerous types and sites of DNA cleavage products that can be induced by such agents. The ability to "cage" such breaks in DNA might help to further such studies and additionally afford a mechanism for activating and deactivating nucleic acid based drugs and probes. The major type of single strand break induced by ionizing radiation is a 3'- and 5'-phosphate terminated single nucleotide gap. Previously, a caged strand break of this type had been developed that was designed to produce the 5'-phosphate directly upon irradiation with 366 nm light, and the 3'-phosphate by a subsequent beta-elimination reaction [Ordoukhanian, P., and Taylor, J.-S. (1995) J. Am. Chem. Soc. 117, 9570]. Unfortunately, the release of the 3'-phosphate group was quite slow at pH 7. To circumvent this problem, a second caged strand break has been developed that produces the 3'-phosphate directly upon irradiation, and the 5'-phosphate by a subsequent beta-elimination reaction. When this caged strand break was used in tandem with the previous caged strand break, 5'- and 3'-phosphate terminated gaps could be directly produced by irradiation with 366 nm light. These caged single strand breaks were also incorporated in tandem into hairpin substrates to demonstrate that they could be used to cage double strand breaks. These caged single strand breaks should be generally useful for generating site-specific DNA single and double strand breaks and gaps, using wavelengths and doses of light that are nondetrimental to biological systems. Because the position of the single strand break can be varied, it should now be possible to examine the effect of the sequence context and cleavage pattern of single and double strand breaks on the lethality and mutagenicity of this important class of DNA damage.  相似文献   

7.
Using filter elution techniques, we have measured the level of induced single- and double-strand DNA breaks and the rate of strand break rejoining following exposure of two Chinese hamster ovary (CHO) cell mutants to bleomycin or neocarzinostatin. These mutants, designated BLM-1 and BLM-2, were isolated on the basis of hypersensitivity to bleomycin and are cross-sensitive to a range of other free radical-generating agents, but exhibit enhanced resistance to neocarzinostatin. A 1-h exposure to equimolar doses of bleomycin induces a similar level of DNA strand breaks in parental CHO-K1 and mutant BLM-1 cells, but a consistently higher level is accumulated by BLM-2 cells. The rate of rejoining of bleomycin-induced single- and double-strand DNA breaks is slower in BLM-2 cells than in CHO-K1 cells. BLM-1 cells show normal strand break repair kinetics. The level of single- and double-strand breaks induced by neocarzinostatin is lower in both BLM-1 and BLM-2 cells than in CHO-K1 cells. The rate of repair of neocarzinostatin-induced strand breaks is normal in BLM-1 cells but retarded somewhat in BLM-2 cells. Thus, there is a correlation between the level of drug-induced DNA damage in BLM-2 cells and the bleomycin-sensitive, neocarzinostatin resistant phenotype of this mutant. Strand breaks induced by both of these agents are also repaired with reduced efficiency by BLM-2 cells. The neocarzinostatin resistance of BLM-1 cells appears to be a consequence of a reduced accumulation of DNA damage. However, the bleomycin-sensitive phenotype of BLM-1 cells does not apparently correlate with any alteration in DNA strand break induction or repair, as analysed by filter elution techniques, suggesting an alternative mechanism of cell killing.  相似文献   

8.
In addition to double- and single-strand DNA breaks and isolated base modifications, ionizing radiation induces clustered DNA damage, which contains two or more lesions closely spaced within about two helical turns on opposite DNA strands. Post-irradiation repair of single-base lesions is routinely performed by base excision repair and a DNA strand break is involved as an intermediate. Simultaneous processing of lesions on opposite DNA strands may generate double-strand DNA breaks and enhance nonhomologous end joining, which frequently results in the formation of deletions. Recent studies support the possibility that the mechanism of base excision repair contributes to genome stability by diminishing the formation of double-strand DNA breaks during processing of clustered lesions.  相似文献   

9.
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.  相似文献   

10.
Summary Irradiation of DNA in situ i.e. in phage particles or in the cell leads to alterations of single DNA nucleotides as well as to clustered lesions such as double strand breaks or unpaired DNA regions the latter being sensitive to digestion by S 1 nuclease. A contribution will be made to the configuration of such S 1-nuclease-sensitive sites (S 1 sites). DNA from irradiated lambda phage containing S 1 sites was treated with gamma endonuclease fromM. luteus which is known to split the nucleotide strand at the position of oxidized pyrimidine base. It was found that the gamma endonuclease induces double-strand breaks at some of the S 1 sites indicating double base damage within this site. However, half of the S 1 sites are not converted into a double-strand break by the gamma endonuclease, indicating base damage only on one strand within the unpaired region.Dedicated to Prof. W. Jacobi on the occasion of his 60th birthday  相似文献   

11.
DNA double-strand breaks are the molecular lesions the repair of which leads to the reappearance of the shoulder observed in split-dose experiments. This conclusion is based on results obtained with the help of a diploid yeast mutant rad 54-3 which is temperature-conditional for the repair of DNA double-strand breaks. Two repair steps must be met to yield the reappearance of the shoulder on a split-dose survival curve: the repair of double-strand breaks during the interval between two doses and on the nutrient agar plate after the second dose. In yeast lethality may be attributable to either an unrepaired double-strand break (i.e. a double-strand break is a potentially lethal lesion) or to the interaction of two double-strand breaks (misrepair of double-strand breaks). Evidence is presented that the two cellular phenomena of liquid holding recovery (repair of potentially lethal damage) and of split-dose recovery (repair of sublethal damage) are based on the repair of the same molecular lesion, the DNA double-strand break.  相似文献   

12.
One of the hallmarks of ionizing radiation exposure is the formation of clustered damage that includes closely opposed lesions. We show that the Ku70/80 complex (Ku) has a role in the repair of closely opposed lesions in DNA. DNA containing a dihydrouracil (DHU) close to an opposing single strand break was used as a model substrate. It was found that Ku has no effect on the enzymatic activity of human endonuclease III when the substrate DNA contains only DHU. However, with DNA containing a DHU that is closely opposed to a single strand break, Ku inhibited the nicking activity of human endonuclease III as well as the amount of free double strand breaks induced by the enzyme. The inhibition on the formation of a free double strand break by Ku was found to be much greater than the inhibition of human endonuclease III-nicking activity by Ku. Furthermore, there was a concomitant increase in the formation of Ku-DNA complexes when endonuclease III was present. Similar results were also observed with Escherichia coli endonuclease III. These results suggest that Ku reduces the formation of endonuclease III-induced free double strand breaks by sequestering the double strand breaks formed as a Ku-DNA complex. In doing so, Ku helps to avoid the formation of the intermediary free double strand breaks, possibly helping to reduce the mutagenic event that might result from the misjoining of frank double strand breaks.  相似文献   

13.
The probability that damage occurs in closely opposed sites on complementary DNA strands increases when DNA is heavily modified with mutagenic agents. Enzymatic excision of the opposite lesions produces DNA double-strand breaks which give rise to genomic rearrangements (deletions, insertions, etc.). Plasmid systems were developed for studying chemical lesions leading to double-strand breaks and the fate of broken plasmid molecules within bacterial cells. Deletions result from the base-pairing of fortuitously located direct repeats flanking the DNA broken ends; as a consequence, the latter are joined, while the DNA fragment between the direct repeats is deleted. Genomic rearrangements arise during the repair of the DNA double-strand breaks, and both events are due to similar repair enzymes which maintain the integrity of the DNA primary structure when conditions are not stressful. A number of genomic rearrangements and point mutations seem to be predetermined by the DNA primary structure.  相似文献   

14.
We examined the effect of double-strand breaks on homologous recombination between two plasmids in human cells and in nuclear extracts prepared from human and rodent cells. Two pSV2neo plasmids containing nonreverting, nonoverlapping deletions were cotransfected into cells or incubated with cell extracts. Generation of intact neo genes was monitored by the ability of the DNA to confer G418r to cells or Neor to bacteria. We show that double-strand breaks at the sites of the deletions enhanced recombination frequency, whereas breaks outside the neo gene had no effect. Examination of the plasmids obtained from experiments involving the cell extracts revealed that gene conversion events play an important role in the generation of plasmids containing intact neo genes. Studies with plasmids carrying multiple polymorphic genetic markers revealed that markers located within 1,000 base pairs could be readily coconverted. The frequency of coconversion decreased with increasing distance between the markers. The plasmids we constructed along with the in vitro system should permit a detailed analysis of homologous recombinational events mediated by mammalian enzymes.  相似文献   

15.
This study tried to clarify the question if nuclear genotoxicity played a role in 3'-azido-3'-deoxythymidine (AZT) toxicity. We investigated cytotoxic and DNA-damaging effects of AZT on human hepatoma HepG2 and human colonic CaCo-2 cells as well as on human diploid lung fibroblasts HEL. The amount of induced DNA damage was measured by standard alkaline single cell gel electrophoresis (SCGE). The nature of induced DNA lesions was evaluated (1) by modified SCGE, which includes treatment of lysed cells with DNA repair enzymes Endo III and Fpg and enables to recognize oxidized bases of DNA, and (2) by SCGE processed in parallel at pH 13.0 (standard technique) and pH 12.1, which enables to recognize alkali labile DNA lesions and direct DNA strand breaks. Cytotoxicity of AZT was evaluated by the trypan blue exclusion technique. Our findings showed that 3-h treatment of cells with AZT decreased the viability of all cell lines studied. SCGE performed in the presence of DNA repair enzymes proved that AZT induced oxidative lesions to DNA in all cell types. In hepatoma HepG2 cells and embryonic lung fibroblasts HEL the majority of AZT-induced DNA strand breaks were pH-independent, i.e. they were identified at both pH values (12.1 and 13.0). These DNA lesions represented direct DNA breaks. In colonic Caco-2 cells DNA lesions were converted to DNA strand breaks particularly under strong alkaline conditions (pH>13.0), which is characteristic for alkali-labile sites of DNA. DNA strand break rejoining was investigated by the standard comet assay technique during 48 h of post-AZT-treatment in HepG2 and Caco-2 cells. The kinetics of DNA rejoining, considered an indicator of DNA repair, revealed that AZT-induced DNA breaks were repaired in both cell types slowly, though HepG2 cells seemed to be more repair proficient with respect to AZT-induced DNA lesions.  相似文献   

16.
Specific strand loss in N-2-acetylaminofluorene-modified DNA   总被引:15,自引:0,他引:15  
N-2-Acetylaminofluorene (AAF), a well-known chemical carcinogen, when covalently linked to guanine residues constitutes a premutagenic lesion that is converted in vivo into frameshift mutations. In Escherichia coli, it is thought that -AAF adducts block the replication fork and that the mutagenic processing of the -AAF adducts is mediated by the SOS response. The construction in vitro of plasmids containing -AAF adducts in one strand only of a double-stranded DNA molecule enabled us to investigate the segregation of the strands and the mutagenicity of the lesions in vivo. The two DNA strands were "genetically labelled" by means of a single base-pair mismatch in the tetracycline-resistance gene, one strand carrying the wild-type allele and the other strand a mutant tetracycline-sensitive allele. The two strands contained either no -AAF adducts, -AAF adducts in one strand or -AAF adducts in both strands. When such constructions are used to transform bacterial cells the following are found. When no -AAF adducts are present on either strand of the DNA, a mixture of plasmids having information from both parent strands is found in 80% of the transformed bacterial clones. With -AAF adducts present in one strand only, in 90% of the transformants there is a consistent loss of the parent strand information that contained the -AAF adducts. In the constructions having -AAF adducts in both strands, the transformed bacteria carry either one or the other allele in a pure form. Our results suggest that when blocking lesions (-AAF adducts) are present in one strand only, they trigger the specific loss of that strand. The forward mutation frequency (i.e. the tetracycline-resistance gene inactivation frequency) was found to be more than ten times lower when the -AAF adducts are bound to one strand only compared with the situation where both strands carry the premutagenic lesions. Moreover, when the isolated mutants were sequenced, the mutations were found to consist of a mixture of true -AAF-induced mutations (i.e. -1 or -2 frameshift mutation at previously determined mutation hot spots) and of mutations that are not targeted at -AAF adducts. We suggest that these "background" mutants arose from the mutagenic processing of cryptic lesions present in our DNA. The low mutagenic efficiency of -AAF adducts, when present in one strand only of a duplex DNA, most probably results from the above-described loss of the damaged strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling.  相似文献   

18.
L F Povirk  C W Houlgrave 《Biochemistry》1988,27(10):3850-3857
Bleomycin and neocarzinostatin induce modified apurinic/apyrimidinic (AP) sites by oxidation of the sugar moiety in DNA. In order to quantitatively assess the susceptibility of these lesions to repair endonucleases, drug-treated 3H-labeled colE1 DNA was mixed with 14C-labeled heat-depurinated DNA, and endonuclease-susceptible sites in the mixture were titrated with various AP endonucleases or with polyamines. Single- and double-strand breaks were quantitated by determining the fractions of supercoiled, nicked circular, and linear molecules. Exonuclease III and endonucleases III and IV of Escherichia coli, as well as putrescine, produced a nearly 2-fold increase in single-strand breaks in bleomycin-treated DNA, indicating cleavage of drug-induced AP sites. The bleomycin-induced AP sites were comparable to heat-induced sites in their sensitivity to E. coli endonucleases III and IV but were cleaved by exonuclease III only at high concentrations. Bleomycin-induced AP sites were much more sensitive to cleavage by putrescine than heat-induced sites. Treatment with putrescine or very high concentrations of endonuclease III also increased the number of double-strand breaks in bleomycin-treated DNA, suggesting a minor class of lesion consisting of an AP site accompanied by a closely opposed break in the complementary strand. These complex lesions were resistant to cleavage by endonuclease IV. However, when colE1 DNA was treated with neocarzinostatin, subsequent treatment with putrescine, endonuclease IV, or very high concentrations of endonuclease III produced a dramatic increase in double-strand breaks but no detectable increase in single-strand breaks. These results suggest that virtually all neocarzinostatin-induced AP sites are accompanied by a closely opposed strand break.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A series of plasmids harboring CTG.CAG repeats with double-strand breaks (DSB), single-strand nicks, or single-strand gaps (15 or 30 nucleotides) within the repeat regions were used to determine their capacity to induce genetic instabilities. These plasmids were introduced into Escherichia coli in the presence of a second plasmid containing a sequence that could support homologous recombination repair between the two plasmids. The transfer of a point mutation from the second to the first plasmid was used to monitor homologous recombination (gene conversion). Only DSBs increased the overall genetic instability. This instability took place by intramolecular repair, which was not dependent on RuvA. Double-strand break-induced instabilities were partially stabilized by a mutation in recF. Gaps of 30 nt formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nt did not induce expansions or deletions. Formation of this deletion product required the CTG.CAG repeats to be present in the single-stranded region and was stimulated by E.coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the intramolecular repair-induced instabilities and the formation of the 30 nt deletion product.  相似文献   

20.
Treatment of an end-labeled DNA restriction fragment with the nonprotein chromophore of neocarzinostatin induced lesions which, after treatment with endonuclease IV or putrescine, were expressed as site-specific double-strand breaks. Analysis of the termini at cleavage sites in each strand showed that the neocarzinostatin-induced lesions consisted of an apurinic/apyrimidinic site plus a closely opposed break in the complementary strand. The break always occurred opposite the base two positions upstream from the apurinic/apyrimidinic site and had the 3'-phosphate and 5'-aldehyde termini characteristic of neocarzinostatin-induced breaks. This positioning suggests that neocarzinostatin simultaneously attacks two DNA sugars on opposite edges of the minor groove. The sequence specificity for formation of apurinic/apyrimidinic sites with closely opposed breaks reflected that of neocarzinostatin-induced mutagenesis. The potent mutagenicity of these lesions may be attributable to the presence of closely opposed damage in both DNA strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号