首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Fenton's reaction is comprised of hydrogen peroxide (H2O2) catalyzed by iron, producing the hydroxyl radical (·OH), a strong oxidant. ·OH in turn may react with H2O2 and iron and is capable of destroying a wide range of organic contaminants. In this laboratory study, Fenton's reaction was observed in aqueous and soil slurry systems using trichloroethylene (TCE) as the target contaminant, with the goal of maximizing TCE degradation while minimizing H2O2 degradation. Fenton's reaction triggers a complex matrix of reactions involving ·OH, H2O2, iron, TCE, and soil organics. In soil slurries with a high fraction of organic carbon (fOC), iron tends to sorb to soil organics and/or particles. In aqueous systems the optimal ratio of H2O2:Fe2+:TCE to degrade TCE in a timely fashion, minimize costs, and minimize H2O2 degradation is 300?mg/L: 25?mg/L: 60?mg/L (19:1:1 molar ratio), while soil slurries with a fOC up to approximately 1% and a soil:water ratio of 1:5 (weight ratio) require about ten times the amount of H2O2, the optimal ratio being 3000?mg/L: 5?mg/L: 60?mg/L (190:0.2:1 molar ratio). TCE degradation rates were observed to decrease in soil slurries with higher fOC because of competition by soil organic matter, which appears to act as a sink for ·OH. H2O2 degradation rates tended to increase in soil slurries with higher fOC, most likely due to increased demand for ·OH by soil organics, increased available iron and other oxidation processes.  相似文献   

2.
Hydrogen peroxide amplifies the chemiluminescence in the oxidation of luminol by sodium hypochlorite. A linear relationship between concentration of hydrogen peroxide and light intensity was found in the concentration range 5 × 10?8?7.5 × 10?6 mol/l. At 7.5 × 10?6 mol/l H2O2 the chemiluminescence is amplified 550—fold. The chemiluminescence spectra of these reactions have a wavelength maximum at 431 nm independent of the concentration of hydrogen peroxide. The results indicate that hydrogen peroxide is a necessary component in the chemiluminescent oxidation of the luminol by sodium hypochlorite.  相似文献   

3.
A new biosensor based on catalase enzyme immobilized on electrochemically constructed polyaniline (PANI) film modified with glutaraldehyde has been developed for the determination of hydrogen peroxide (H2O2) in milk samples. Assembly processes of polyaniline and immobilization of the enzyme were monitored with the help of electrochemical impedance spectroscopy. Amperometric measurements have been performed at cathodic peak (?0.3?V vs. Ag/AgCI) which was attributed to reduction of PANI. Hydrogen peroxide was determined by using amperometric method at ?0.3?V. The biosensor responses were correlated linearly with the hydrogen peroxide concentrations between 5.0?×?10?6 and 1.0?×?10?4?M by amperometric method. Detection limit of the biosensor is 2.18?×?10?6?M for H2O2. In the optimization studies of the biosensor, some parameters such as optimum pH, temperature, concentration of aniline, amount of enzyme, and number of scans during electropolymerization were investigated.  相似文献   

4.
Adsorption of microorganisms on minerals is a ubiquitous interfacial phenomenon in soil. Knowledge of the extent and mechanisms of bacterial adsorption on minerals is of great agronomic and environmental importance. This study examined adsorption of Bacillus subtilis on three common minerals in soils such as kaolinite, montmorillonite and goethite under various environmental conditions. Isothermal titration calorimetry (ITC) was used to investigate the effects of temperature (20, 30, and 40°C), pH (5.0, 7.0, and 9.0) and KNO3 concentration (0.001, 0.01, and 0.1 mol L?1) on the adsorption by direct measurement of enthalpies. The results revealed that the adsorption process in all the mineral systems were exothermic, with the enthalpy changes (ΔHads ) ranging from ?52 to ?137, ?33 to ?147, and ?53 to ?141 kJ kg?1 (dry weight of adsorbed bacteria) for kaolinite, montmorillonite, and goethite, respectively. No obvious dependence of ΔHads on temperature was observed. The heat release for all the systems generally declined with pH and decrease of salt concentration, which can be explained by the variations of hydrophobicity and electrostatic force with pH or salt concentration. The largest decrease was found for goethite among the three minerals from pH 5.0 to 7.0, suggesting that electrostatic attraction may play a more important role in bacterial adsorption on this mineral. The ΔHads values for all the minerals became nearly the same at pH 9.0, indicating that the same force probably hydrophobicity governing the adsorption for the minerals in alkaline environment. It is assumed that acidic or saline soils and the associated environments favor the adsorption of B. subtilis on clay minerals. In addition, the negative enthalpies expressed as kJ kg?1 (carbon) revealed an energy flow into the environment accompanied by the carbon adsorption on the minerals in soil.  相似文献   

5.
The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2 Phenol = 0.9214 and R2TOC= 0.9082).  相似文献   

6.
Redox transitions induced by seasonal changes in water column O2 concentration can have important effects on solutes exchange across the sediment–water interface in systems polluted with acid mine drainage (AMD), thus influencing natural attenuation and bioremediation processes. The effect of such transitions was studied in a mesocosm experiment with water and sediment cores from an acidic reservoir (El Sancho, SW Spain). Rates of aerobic organic matter mineralization and oxidation of reduced inorganic compounds increased under oxic conditions (OX). Anaerobic process, like Fe(III) and sulfate reduction, also increased due to higher O2 availability and penetration depth in the sediment, resulting in higher regeneration rates of their corresponding anaerobic e? acceptors. The contribution of the different processes to oxygen uptake changed considerably over time. pH decreased due to the precipitation of schwertmannite and the release of H+ from the sediment, favouring the dissolution of Al-hydroxides and hydroxysulfates at the sediment surface. The increase in dissolved Al was the main contributor to water column acidity during OX. Changes in organic matter degradation rates and co-precipitation and dissolution of dissolved organic carbon and nitrogen with redox-sensitive Fe(III) compounds affected considerably C and N cycling at the sediment–water interface during redox transitions. The release of NO2? and NO3? during the hypoxic period could be attributed to ammonium oxidation coupled to ferric iron reduction (Feammox). Considering the multiple effects of redox transitions at the sediment–water interface is critical for the successful outcome of natural attenuation and bioremediation of AMD impacted aquatic environments.  相似文献   

7.
Alkaline hydrolysis and subcritical water degradation were investigated as ex-situ remediation processes to treat explosive-contaminated soils from military training sites in South Korea. The addition of NaOH solution to the contaminated soils resulted in rapid degradation of the explosives. The degradation of explosives via alkaline hydrolysis was greatly enhanced at pH ≥12. Estimated pseudo-first-order rate constants for the alkaline hydrolysis of 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated soil at pH 13 were (9.6?±?0.1)×10?2, (2.2?±?0.1)×10?1, and (1.7?±?0.2)×10?2 min?1, respectively. In the case of subcritical water degradation, the three explosives were completely removed at 200–300°C due to oxidation at high temperatures and pressures. The degradation rate increased as temperature increased. The pseudo-first-order rate constants for DNT, TNT, and RDX at 300°C were (9.4?±?0.8)×10?2, (22.8?±?0.3)×10?2, and (16.4?±?1.0)×10?2, respectively. When the soil-to-water ratio was more than 1:5, the extent of alkaline hydrolysis and subcritical water degradation was significantly inhibited.  相似文献   

8.
Electrogenerated chemiluminescence (ECL) of thiol‐capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA‐protected graphene (P‐GR) film that were used for the sensitive detection of H2O2. When the potential was cycled between 0 and ?2.3 V, two ECL peaks were observed at ?1.1 (ECL‐1) and ?1.4 V (ECL‐2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron‐transfer reaction between individual electrochemically‐reduced CdTe nanocrystal species and oxidant coreactants (H2O2 or reduced dissolved oxygen) led to the production of ECL‐1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL‐2 signal. ECL‐1 showed higher sensitivity for the detection of H2O2 concentrations than that of ECL‐2. Further, P‐GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2O2 between 1.0 × 10?5 and 2.0 x 10‐7 mol L?1 with a detection limit of 9.8 x 10?8 mol L?1. The P‐GR thin‐film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long‐term stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The oxidation reaction of H2O2 with KIO4 can produce chemiluminescence (CL) in the presence of the surfactant Tween40 and the CL intensity of the CL system KIO4–H2O2–Tween40 can be strikingly enhanced after injection of tannic acid. On this basis, a flow injection method with CL detection was established for the determination of tannic acid. The method is simple, rapid and effective to determine tannic acid in the range of 7.0 × 10?9 to 1.0 × 10?5 mol/L with a determination limit of 2.3 × 10?9 mol/L. The relative standard deviation is 2.6% for the determination of 5.0 × 10?6 mol/L tannic acid (n = 11). The method has been applied to determine the content of tannic acid in industrial wastewater with satisfactory results. It is believed that the CL reaction formed singlet oxygen 1O2* and the emission was from an excited oxygen molecular pair O2(1Δg)O2(1?g) in the KIO4–H2O2–Tween40 reaction. Tween40 played an important role in enhancing stabilization of the excited oxygen molecular pair O2(1Δg)O2(1?g) and in increasing CL intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Phenanthrene biodegradation was investigated at different soil water contents [0.11, 0.22, 0.33, 0.44 g H2O (g soil)?1] to determine the effects of water availability on biodegradation rate. A subsurface horizon of Kennebec silty loam soil was used in this study. [9-14C] phenanthrene was dissolved in a mixture of organic contaminants that consisted of 76% decane, 6% ρ-xylene, 6% phenanthrene, 6% pristane, and 6% naphthalene, and then added to the soil. The highest rate of mineralization, in which 0.23% of the [9-14C] phenanthrene degraded to 14CO2 after 66 days of incubation, was observed at the soil water content of 0.44 g H2O/g dry soil. Most of the 14C remained in the soil as the parent compound or as nonextractable compounds by acetonitrile at the highest water content. Concentrations of nonextractable compounds increased with water content, but residual extractable phenanthrene decreased significantly with increasing water content, which presumably indicates that bio-transformation occurred. The mineralization analysis of radiolabeled 9th carbon in phenanthrene underestimated phenanthrene biodegradation. The strong adsorption and low solubility of phenanthrene contributed to the low mineralization of phenanthrene 9th carbon. The other components were subject to higher biological and abiotic dissipation processes with increasing soil water content.  相似文献   

11.
《Free radical research》2013,47(11):1300-1310
Abstract

Hypotaurine and cysteine sulfinic acid are known to be readily oxidized to the respective sulfonates, taurine and cysteic acid, by several oxidative agents that may be present in biological systems. In this work, the relevance of both the carbonate anion and nitrogen dioxide radicals in the oxidation of hypotaurine and cysteine sulfinic acid has been explored by the peroxidase activity of Cu,Zn superoxide dismutase (SOD) and by pulse radiolysis. The extent of sulfinate oxidation induced by the system SOD/H2O2 in the presence of bicarbonate (CO3?– generation), or nitrite (?NO2 generation) has been evaluated. Hypotaurine is efficiently oxidized by the carbonate radical anion generated by the peroxidase activity of Cu,Zn SOD. Pulse radiolysis studies have shown that the carbonate radical anion reacts with hypotaurine more rapidly (k = 1.1 × 109 M?1s?1) than nitrogen dioxide (k = 1.6 × 107 M?1s?1). Regarding cysteine sulfinic acid, it is less reactive with the carbonate radical anion (k = 5.5 × 107 M?1s?1) than hypotaurine. It has also been observed that the one-electron transfer oxidation of both sulfinates by the radicals is accompanied by the generation of transient sulfonyl radicals (RSO2?). Considering that the carbonate radical anion could be formed in vivo at high level from bicarbonate, this radical can be included in the oxidants capable of performing the last metabolic step of taurine biosynthesis. Moreover, the protective effect exerted by hypotaurine and cysteine sulfinate on the carbonate radical anion-mediated tyrosine dimerization indicates that both sulfinates have scavenging activity towards the carbonate radical anion. However, the formation of transient reactive intermediates during sulfinate oxidation by carbonate anion and nitrogen dioxide radical may at the same time promote oxidative reactions.  相似文献   

12.
An electrochemical approach to directly measure the dynamic process of H2O2 release from cultures of Arabidopsis thaliana cells is reported. This approach is based on H2O2 oxidation on a Pt electrode in conjunction with continuous measurement of sample pH. For [H2O2] <1 mm , calibration plots were linear and the amperometric response of the electrode was maximum at pH 6. At higher concentrations ([H2O2] >1 mm ), the amperometric response can be described by Michaelian‐type kinetics and a mathematical expression relating current intensity and pH was obtained to quantitatively determine H2O2 concentration. At pH 5.5, the detection limit of the sensor was 3.1 µm (S/N = 3), with a response sensitivity of 0.16 Am ?1 cm?2 and reproducibility was within 6.1% in the range 1–5 × 10?3 m (n = 5). Cell suspensions under normal physiological conditions had a pH between 5.5–5.7 and H2O2 concentrations in the range 7.0–20.5 µm (n = 5). The addition of exogenous H2O2, as well as other potential stress stimuli, was made to the cells and the change in H2O2 concentration was monitored. This real‐time quantitative H2O2 analysis is a potential marker for the evaluation of oxidative stress in plant cell cultures.  相似文献   

13.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

14.
Extraction of Ca2+ from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as “the decoupling effect” (Semin et al. Photosynth Res 98:235–249, 2008). Extraction of Cl? from Ca2+-depleted membranes (PSII[–Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 ·? , as possible products of water oxidation in PSII(–Ca) membranes was examined. During the investigation of O 2 ·? production in PSII(–Ca) samples, we found that (i) O 2 ·? is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl? does not inhibit water oxidation, but (iii) Cl? depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl? under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 ·? generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl? anions are not involved in the oxidation of water to H2O2 in decoupled PSII(–Ca) membranes. These results also indicate that Cl? anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H+ ions into the lumenal space.  相似文献   

15.
A highly sensitive and simple spectrofluorimetric method for the determination of tiopronin based on its inhibitory effect on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine was developed. The concentration of tiopronin is linear with decreased fluorescence (ΔF) of the system under the optimal experimental conditions. The calibration graph is linear in the range 1.23 × 10?8 to 3.06 × 10?5 mol L?1 with a detection limit of 6.13 × 10?9 mol L?1. The relative standard deviation was 4.38% for 11 determinations of 6.13 × 10?6 mol L?1. This method can be used for the determination of tiopronin in pharmaceuticals with satisfactory results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Thyroglobulin (Tg) was subjected to metal-catalyzed oxidation, and the oxidative degradation was analyzed by SDS-polyacrylamide gel electrophoresis under reducing conditions. In contrast to no effect of hydrogen peroxide (H2O2) alone on the Tg degradation, the inclusion of Cu2+ (30 μM), in combination with 2 mM H2O2, caused a remarkable degradation of Tg, time- and concentration-dependent. The action of Cu2+ was not mimicked by Fe2+, suggesting that Tg may interact selectively with Cu2+. A similar degradation of Tg was also observed with Cu2+corbate system, and the concentration of Cu2+ (5–10 μM), in combination with ascorbate, required for the effective degradation was smaller than that of Cu2+ (10–30 μM) in combination with H2O2. In support of involvement of H2O2 in the Cu2+ corbate action, catalase expressed a complete protection. However, hydroxyl radical scavengers such as dimethylsulfoxide or mannitol failed to prevent the oxidation of Tg whereas phenolic compounds, which can interact with Cu2+, diminished the oxidative degradation, presumably consistent with the mechanism for Cu2+-catalyzed oxidation of protein. Moreover, the amount of carbonyl groups in Tg was increased as the concentration (3–100 μM) of Cu2+ was enhanced, while the formation of acid-soluble peptides was not remarkable in the presence of Cu2+ up to 200 μM. In further studies, Tg pretreated with heat or trichloroacetic acid seemed to be somewhat resistant to Cu2+-catalyzed oxidation, implying a possible involvement of protein conformation in the susceptibility to the oxidation. Based on these observations, it is proposed that Tg could be degraded non-enzymatically by Cu2+-catalyzed oxidation.  相似文献   

18.
Polyamine oxidase from Penicillium chrysogenum oxidized spermine rapidly and spermidine slightly at pH 7.5. The apparent Km values for spermine and spermidine were calculated to be 2.25 × 10?5 m and 9.54 × 10?6 m, respectively. The relative maximum velocities for spermine and spermidine were 3.37 × 10?3 m (H2O2) per min per mg of protein and 2.08 × 10?4 m (H2O2) per min per mg of protein, respectively. Spermine oxidation of the enzyme was competitively inhibited by spermidine and putrescine. The apparent Ki values by spermidine and putrescine were calculated to be 3.00 × 10?5 m and 1.80 × 10?8 m, respectively. On the other hand, polyamine oxidase from Aspergillus terreus rapidly oxidized both spermidine and spermine at pH 6.5. The apparent Km values for spermidine and spermine were 1.20 × 10?8 m and 5.37 × 10?7 m, respectively. The relative maximum velocities for spermidine and spermine were 1.55 × 10?2 m (H2O2) per min per mg of protein and 6.20 × 10?3 m (H2O2) per min per mg of protein, respectively.

Differential determination of spermine and spermidine was carried out using the two enzymes. The initial rate was assayed with Penicillium enzyme and the end point was measured afte addition of Aspergillus enzyme. Small amounts of polyamines (25 to 200 nmol of spermine and 25 to 250 nmol of spermidine) were assayed by solving two simultaneous equations obtained from the rate assay method and the end point assay method. The calculated values were in close agreement with those obtained by an amino-acid analyzer.  相似文献   

19.
Accurate quantification of different soil organic carbon (SOC) fractions is needed to understand their relative importance in the global C cycle. Among the chemical methods of SOC fractionation, oxidative degradation is considered more promising because of its ability to mimic the natural microbial oxidative processes in soil. This study focuses on detailed understanding of changes in structural chemistry and isotopic signatures of SOC upon different oxidative treatments for assessing the ability of these chemicals to selectively isolate a refractory fraction of SOC. Replicated sampling (to ~1 m depth) of pedons classified as Typic Fragiudalf was conducted under four land uses (woodlot, grassland, no-till and conventional-till continuous corn [Zea mays L.]) at Wooster, OH. Soil samples (<2 mm) were treated with three oxidizing agents (hydrogen peroxide (H2O2), disodium peroxodisulfate (Na2S2O8) and sodium hypochlorite (NaOCl)). Oxidation resistant residues and the bulk soil from A1/Ap1 horizons of each land use were further analyzed by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and accelerator mass spectrometry to determine structural chemistry and 14C activity, respectively. Results indicated that, oxidation with NaOCl removed significantly less SOC compared to Na2S2O8 and H2O2. The NMR spectra revealed that NaOCl oxidation preferentially removed lignin-derived compounds at 56 ppm and at 110–160 ppm. On the other hand, the SOC resistant to Na2S2O8 and H2O2 oxidation were enriched with alkyl C groups, which dominate in recalcitrant macromolecules. This finding was corroborated by the 14C activity of residual material, which ranged from ?542 to ?259‰ for Na2S2O8 resistant SOC and ?475 to ?182‰ for H2O2 resistant SOC as compared to relatively greater 14C activity of NaOCl resistant residues (?47 to 61‰). Additionally, H2O2 treatment on soils after light fraction removal was more effective in isolating the oldest (14C activity of ?725 to ?469‰) SOC fraction. The Δ14C signature of SOC removed by different oxidizing agents, calculated by mass balance, was more or less similar irrespective of the difference in labile SOC removal efficiency. This suggests that SOC isolated by many fractionation methods is still a mixture of much younger and older material and therefore it is very important that the labile SOC should be completely removed before measuring the turnover time of stable and refractory pools of SOC.  相似文献   

20.
A highly selective and simple chemiluminescence (CL) method for determination of penicillin G potassium (PGK) was developed. In the proposed method, CL was elicited from PGK upon its oxidation with H2O2. The light emission was enhanced in the presence of N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB). An experimental design, central composite design (CCD), was used to realize the optimized variables, including pH, surfactant (CTMAB) and H2O2 concentrations. Under optimum condition, the calibration graph was linear in the range 3.3 × 10?3–3.3 × 10?1 mmol/L, with a detection limit of 8.8 × 10?4 mmol/L for PGK. The precision was calculated by analysing samples containing 1.6 × 10?1 mmol/L PGK (n = 5) and the relative standard deviation (RSD) was 1.40%. The utility of this method was demonstrated by determining PGK in pharmaceutical formulations for injection. The proposed method was validated by a reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号