首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure recombinant Flavobacterium parathion hydrolase (an organophosphorus acid anhydrase) from Streptomyces lividans was found to hydrolyze the toxic nerve agent soman at only 0.1% of the rate observed with parathion as substrate. Studies with wild-type and recombinant strains of S. lividans support the lack of significant soman breakdown by the hydrolase and also indicate the presence in S. lividans of other significant hydrolytic enzymatic activity towards soman.  相似文献   

2.
A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.  相似文献   

3.
A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.  相似文献   

4.
Currently, there has been limited use of genetic engineering for waste treatment. In this work, we are developing a procedure for the in situ treatment of toxic organophosphate wastes using the enzyme parathion hydrolase. Since this strategy is based on the use of an enzyme and not viable microorganisms, recombinant DNA technology could be used without the problems associated with releasing genetically altered microorganisms into the environment. The gene coding for parathion hydrolase was cloned into a Streptomyces lividans, and this transformed bacterium was observed to express and excrete this enzyme. Subsequently, fermentation conditions were developed to enhance enzyme production, and this fermentation was scaled-up to the pilot scale. The cell-free culture fluid (i.e., a nonpurified enzyme solution) was observed to be capable of effectively hydrolyzing organophosphate compounds under laboratory and simulated in situ conditions.  相似文献   

5.
Bioprocessing strategies to improve production of the heterologous protein parathion hydrolase from recombinant Streptomyces lividans were investigated. Initial limitations to increased production were overcome by using large amounts of nutrients and feeding these nutrients throughout the fermentation. Batch addition of such large amounts of nutrients resulted in byproduct acid accumulation. Our data suggest that byproducts resulted from incomplete utilization of peptide medium ingredients and not from an overflow of glucose catabolism. Over extended fed-batch operation, oxygen transfer became limiting and these limitations were overcome by sparging oxygen-enriched gas. When cultivation was continued past about 90 h, we observed that despite nutrient feeding and oxygen enrichment enzyme activities no longer increased. Our results show that during such late cultivation periods the rates of enzyme synthesis and deactivation became balanced. If synthesis is prevented, either by a nutritional limitation or by the addition of the protein synthesis inhibitor chloramphenicol, enzyme activities were observed to decrease. Since deactivation rate constants in these experiments were similar to those observed in cell-free studies, and because extracellular protease activities were not detected in our fermentation, it appears that deactivation results from the inherent instability of the parathion hydrolase enzyme.  相似文献   

6.
Bacterial detoxification of diisopropyl fluorophosphate   总被引:4,自引:0,他引:4  
The ability of 18 gram-negative bacterial isolates to detoxify diisopropyl fluorophosphate, a structural analog of the agents soman and sarin, was investigated. Detoxification by both frozen cell sonicates and acetone powders was assayed by two methods, i.e., the hydrolytic release of fluoride, measured by a fluoride-specific ion electrode, and the disappearance of acetylcholinesterase inhibition in vitro. Frozen cell sonicates for all strains exhibited some activity (F- ion release). In general, acetone powder preparations produced higher activity than frozen cell sonicates did, and the highest activities were exhibited by strains with known parathion hydrolase activity. Two ranges in activity were observed, low level, ranging from 0.1 to 7.0 mumol/min per g of protein, and high level, detected only in parathion hydrolase-producing strains, from 47 to greater than 300 mumol/min per g of protein. Results indicate that parathion hydrolase was nonspecific in phosphoesterase activity. Also, it was an effective detoxicant at low concentrations and near-neutral pH.  相似文献   

7.
Bacterial detoxification of diisopropyl fluorophosphate.   总被引:8,自引:4,他引:4       下载免费PDF全文
The ability of 18 gram-negative bacterial isolates to detoxify diisopropyl fluorophosphate, a structural analog of the agents soman and sarin, was investigated. Detoxification by both frozen cell sonicates and acetone powders was assayed by two methods, i.e., the hydrolytic release of fluoride, measured by a fluoride-specific ion electrode, and the disappearance of acetylcholinesterase inhibition in vitro. Frozen cell sonicates for all strains exhibited some activity (F- ion release). In general, acetone powder preparations produced higher activity than frozen cell sonicates did, and the highest activities were exhibited by strains with known parathion hydrolase activity. Two ranges in activity were observed, low level, ranging from 0.1 to 7.0 mumol/min per g of protein, and high level, detected only in parathion hydrolase-producing strains, from 47 to greater than 300 mumol/min per g of protein. Results indicate that parathion hydrolase was nonspecific in phosphoesterase activity. Also, it was an effective detoxicant at low concentrations and near-neutral pH.  相似文献   

8.
9.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   

10.
毒性T淋巴细胞相关抗原-4(CTLA-4)在链霉菌中的表达研究   总被引:1,自引:1,他引:0  
王朝健  李元 《遗传学报》2002,29(1):79-83
应用两种链霉菌新型信号肽--vsi和gpp在常用工程菌变铅青链霉菌(Streptomyces lividans)中进行了CTLA-4的分泌表达研究,vsi信号肽与CTLA-4的融合片段克隆至链霉素-大肠杆菌穿梭质粒pUWL-219,同时gpp信号肽与CTLA-4片段在质粒pLNSP中融合,分别转化S.lividans TK24,获得重组菌株S.lividans[pUWL219-VC]和S.lividans[pLNSP/CTLA-4]。重组菌株的发酵上清液经SDS-PAGE及Western blotting分析结果表明:应用不同信号肽构建的两株工程菌均能表达分子量为13000重组蛋白,具有免疫活性。  相似文献   

11.
Summary A heterologous phosphotriesterase (parathion hydrolase) containing the native Flavobacterium species signal sequence was previously shown to be secreted by Streptomyces lividans. Western blot analysis of the recombinant phosphotriesterase produced by S. lividans demonstrated only the mature form extracellular but both processed and unprocessed forms in cell-associated samples. To investigate the efficiency of secretion in Streptomyces, a construction was made that substituted a native Streptomyces -galactosidase signal sequence for the Flavobacterium signal sequence. This resulted in a higher proportion of hydrolase in the extracellular fluid and a lower proportion of parathion hydrolase remaining cell-associated. These results suggest that use of a native Streptomyces signal sequence may result in more efficient secretion of heterologous proteins.Correspondence to: M. K. Speedie  相似文献   

12.
A bacterium, Burkholderia sp. JBA3, which can mineralize the pesticide parathion, was isolated from an agricultural soil. The strain JBA3 hydrolyzed parathion to p-nitrophenol, which was further utilized as the carbon and energy sources. The parathion hydrolase was encoded by a gene on a plasmid that strain JBA3 harbored, and it was cloned into pUC19 as a 3.7-kbp Sau3AI fragment. The ORF2 (ophB) in the cloned fragment encoded the parathion hydrolase composed of 526 amino acids, which was expressed in E. coli DH10B. The ophB gene showed no significant sequence similarity to most of other reported parathion hydrolase genes.  相似文献   

13.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   

14.
Three Stenotrophomonas maltophilia isolates, KKWT11, CBF10-1, TTF10, were collected from organophosphate (OP)-contaminated soil in the Houston metropolitan area. A conserved metallo-β-lactamase (MBL) enzyme purported to function as a methyl parathion hydrolase was identified and found to be distantly homologous to the characterized Pseudomonas sp. WBC-3 methyl parathion hydrolase and shared no significant homology with other organophosphate hydrolases. Following expression of MBL enzymes cloned from S. maltophilia strains KKWT11, CBF10-1, and TTF10, respectively, an enzymatic preference for paraoxon was observed, with concentrations of 70, 40, and 30 µM of p-nitrophenol (PNP) formed after 48 h. Comparatively limited hydrolysis against the phosphorothioate methyl parathion was recorded with concentrations of PNP ranging from 9.5 to 3.5 µM after 48 h. A coexpressive construct harboring a modified organophosphorus hydrolase enzyme and the CBF10-1 MBL enzyme yielded only a slight improvement in degradation of methyl parathion, resulting in 75 µM of PNP formed compared with 69 µM formed by the organophosphorus hydrolase (OPH) control over 48 h. These results suggest that S. maltophilia MBL enzymes are currently insufficient for broad-spectrum hydrolysis of phosphorothioate insecticides. Future studies will thus seek to elucidate their catalytic efficiency against other notable phosphotriester oxons, including chlorpyrifos oxon, and malaoxon.  相似文献   

15.
We addressed the ability of various organophosphorus (OP) hydrolases to catalytically scavenge toxic OP nerve agents. Mammalian paraoxonase (PON1) was found to be more active than Pseudomonas diminuta OP hydrolase (OPH) and squid O,O-di-isopropyl fluorophosphatase (DFPase) in detoxifying cyclosarin (O-cyclohexyl methylphosphonofluoridate) and soman (O-pinacolyl methylphosphonofluoridate). Subsequently, nine directly evolved PON1 variants, selected for increased hydrolytic rates with a fluorogenic diethylphosphate ester, were tested for detoxification of cyclosarin, soman, O-isopropyl-O-(p-nitrophenyl) methyl phosphonate (IMP-pNP), DFP, and chlorpyrifos-oxon (ChPo). Detoxification rates were determined by temporal acetylcholinesterase inhibition by residual nonhydrolyzed OP. As stereoisomers of cyclosarin and soman differ significantly in their acetylcholinesterase-inhibiting potency, we actually measured the hydrolysis of the more toxic stereoisomers. Cyclosarin detoxification was approximately 10-fold faster with PON1 mutants V346A and L69V. V346A also exhibited fourfold and sevenfold faster hydrolysis of DFP and ChPo, respectively, compared with wild-type, and ninefold higher activity towards soman. L69V exhibited 100-fold faster hydrolysis of DFP than the wild-type. The active-site mutant H115W exhibited 270-380-fold enhancement toward hydrolysis of the P-S bond in parathiol, a phosphorothiolate analog of parathion. This study identifies three key positions in PON1 that affect OP hydrolysis, Leu69, Val346 and His115, and several amino-acid replacements that significantly enhance the hydrolysis of toxic OPs. GC/pulsed flame photometer detector analysis, compared with assay of residual acetylcholinesterase inhibition, displayed stereoselective hydrolysis of cyclosarin, soman, and IMP-pNP, indicating that PON1 is less active toward the more toxic optical isomers.  相似文献   

16.
17.
A heterologous phosphotriesterase (parathion hydrolase) was previosly shown to be secreted by Streptomyces lividans. To investigate the mechanism of secretion, a system to label the protein and follow its expression and secretion was developed. The recombinant S. lividans was grown first in a defined medium containing [35S]methionine that permitted expression but not secretion. It was then transferred to tryptone/glucose medium with unlabeled methionine for the chase period, during which secretion was observed. The results indicate a relatively slow rate of secretion that is also dependent on the growth medium.  相似文献   

18.
The choice of a host for the production of a biological molecule will have a significant effect on isolation and purification procedures employed. This paper makes a comparison between the production of a single enzyme, a recombinant alpha-amylase, in Escherichia coli and Streptomyces lividans, on a small scale. It defines the differences in the cultivation and in the isolation stages and also describes the impact of the expression system on later downstream processing steps. At the cultivation stage, the specific productivity of the E. coli in units per gram per hour is four times that of the S. lividans while the total biomass yields are of the same order. The initial volume for downstream processing of S. lividans is six-fold larger and the total protein released into the extracellular medium is three times greater than E. coli, however, the recoverable yield from the E. coli is a fifth of that obtained from the S. lividans and requires three additional stages prior to chromatography. Even with these stages the final specific activity is 64% of the S. lividans. The results indicate the need to consider the whole process when making such comparisons.  相似文献   

19.
同源重组法构建多功能农药降解基因工程菌研究   总被引:13,自引:1,他引:12  
构建遗传稳定的多功能农药降解基因工程菌可以为农药污染的生物修复提供良好的菌种资源,然而,构建遗传稳定且不带入外源抗性的基因工程菌是一个难点。通过以受体菌的16S rDNA为同源重组指导序列、sacB基因为双交换正筛选标记构建同源重组载体,二亲结合的方法将甲基对硫磷水解酶基因(mpd)整合到呋喃丹降解菌Sphingomonas sp.CDS1染色体的16S rDNA位点,分别成功构建了含1个和2个mpd基因插入到rDNA位点且不带入外源抗性的基因工程菌株CDSmpd和CDS-2mpd。同源重组单交换的效率为3.7×10-7~6.8×10-7。通过PCR和Southern杂交的方法验证了同源重组事件。基因工程菌遗传稳定,能同时降解甲基对硫磷和呋喃丹。甲基对硫磷水解酶(MPH)的比活在各生长时期均高于原始出发菌株,比活最高达6.22 mu/μg。  相似文献   

20.
Enzymatic degumming of ramie bast fibers   总被引:18,自引:0,他引:18  
Bast fibers from ramie (Boehmeria nivea) were treated with cell-free culture supernatants from an Amycolata sp. and a recombinant Streptomyces lividans strain expressing the Amycolata pectate lyase to investigate the degumming effects of different extracellular polysaccharide-degrading enzymes. Culture supernatants from the Amycolata sp. with high pectate lyase activities were most effective in fiber separation and reduced the gum content of ramie fibers by 30% within 15 h. Xylanase activity produced by the Amycolata sp. contributed little to the degumming. Electron micrographs showed that the crude pectate lyase from the Amycolata sp. removed plant gum more efficiently from decorticated ramie bast fibers than the purified enzyme. Similarly, degumming with the crude enzyme of the Amycolata sp. and the recombinant S. lividans strain for 24 h resulted in fibers with a residual gum content of 14.7 and 17.3%, respectively. Degumming with the crude enzyme of the recombinant Streptomyces strain was slightly improved by the addition of a commercial pectinesterase. No significant degumming was observed with the crude enzyme from an S. lividans strain that did not produce the Amycolata pectate lyase. These results indicate that the pectinolytic activity of the Amycolata sp. plays an active role in degumming of ramie bast fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号