首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene for incontinentia pigmenti is assigned to Xq28   总被引:14,自引:0,他引:14  
A linkage study of eight families with incontinentia pigmenti (IP) has been performed, and linkage to site DXS52 has been established. We suggest that the IP locus lies in the Xq terminal region on the long arm of the X chromosome.  相似文献   

2.
Incontinentia pigmenti (IP) is an X-linked dominant disorder characterized by developmental anomalies of the tissues and organs derived from embryonic ectoderm and neuroectoderm. An IP locus, designated IP1, probably resides in Xp11.21, since five unrelated patients with nonfamilial IP have been identified who possess constitutional de novo reciprocal X;autosome translocations involving Xp11.21. We have used a series of somatic cell hybrids containing the rearranged chromosomes derived from three of the five IP1 patients, along with other hybrid cell lines, to map probes in the vicinity of the IP1 locus. Five anonymous DNA loci--DXS422, DXS14, DXS343, DXS429, and DXS370--have been mapped to a region within Xp11.21, between two IP1 X-chromosomal translocation breakpoints; the IP1 t(X;17) breakpoint is proximal (centromeric) to this region, and the IP1 t(X;13) and t(X;9) X-chromosomal breakpoints lie distal to it. While no IP1 translocation breakpoint has yet been identified by pulsed-field gel electrophoretic (PFGE) analysis, an overlap between three probes--p58-1, 7PSH3.5, and cpX210--has been detected, placing these probes within 125 kb. Four probes--p58-1, 7PSH3.5, cpX210, and 30CE2.8--have been helpful in constructing a 1,250-kb PFGE map of the region between the breakpoints; these results suggest that the IP1 X-chromosomal translocation breakpoints are separated by at least this distance. The combined somatic cell hybrid and PFGE analyses we report here favor the probe order DXS323-(IP1 t(X;13), IP1, t(X;9]-(DXS422, DXS14, DXS343, DXS429, DXS370)-(IP1 t(X;17), DXZ1). These sequences provide a starting point for identifying overlapping genomic sequences that span the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should now assist the cloning of this locus.  相似文献   

3.
A de novo t(X;13)(p11.21;q12.3) translocation is described in an 19-month-old girl with incontinentia pigmenti (IP) and bilateral retinoblastoma. Based on previously reported two girls and this patient, each with a structural X chromosome abnormality and IP, it was assumed that the locus for IP is at Xp11.21. Q-banding analysis revealed that the translocated chromosomes were of paternal origin. The derivative X chromosome was late-replicating in 9% of cultured peripheral blood lymphocytes and in 1% of skin fibroblasts. The erythrocyte esterase D activity in the patient was normal. Several possibilities were considered for possible causative relationship between the X/13 translocation and the development of retinoblastoma. One possibility involved functional monosomy of 13q14 in a minority of retinoblasts due to the spreading of inactivation of the translocated X chromosome segment.  相似文献   

4.
Two cases of X/autosome translocation in females with incontinentia pigmenti   总被引:13,自引:0,他引:13  
Summary We report two unrelated girls who present some clinical features of severe incontinentia pigmenti (IP), with characteristic skin pigmentation. Both have balanced de novo X/autosome translocations involving band Xp11. The coincidence of the probable de novo expression of an X-linked disorder in these two girls with translocations involving similar breakpoints on the X chromosome suggests that this band may be the site of the IP gene locus.  相似文献   

5.
Radiation hybrid mapping was used in combination with physical mapping techniques to order and estimate distances between 14 loci in the proximal region of the short arm of the human X chromosome. A panel of radiation hybrids containing human X-chromosomal fragments was generated from a Chinese hamster-human cell hybrid containing an X chromosome as its only human DNA. Sixty-seven radiation hybrids were screened by Southern hybridization with sets of probes that mapped to the region Xp11.4-Xcen to generate a radiation hybrid map of the area. A physical map of 14 loci was constructed based on the segregation of the loci in the hybrid clones. Using pulsed-field gel electrophoresis (PFGE) analyses and a somatic cell hybrid mapping panel containing naturally occurring X; autosome translocations, the order of the 14 loci was verified and the loci nearest to the X-chromosomal translocation breakpoints associated with the disease incontinentia pigmenti 1 (IP1) were identified. The radiation hybrid panel will be useful as a mapping resource for determining the location, order, and distances between other genes and polymorphic loci in this region as well as for generating additional region-specific DNA markers.  相似文献   

6.
A strategy based on the use of human-specific interspersed repetitive sequence (IRS)-PCR amplification was used to isolate regional DNA markers in the vicinity of the incontinentia pigmenti 1 (IP1) locus. A radiation hybrid (RH) resulting from a fusion of an irradiated X-only somatic cell hybrid (C12D) and a thymidine kinase deficient (TK-) hamster cell line (a23) was identified as containing multiple X chromosome fragments, including DNA markers spanning IP1 X-chromosomal translocation breakpoints within region Xp11.21. From this RH, a panel of subclones was constructed and analyzed by IRS-PCR amplification to (a) identify subclones containing a reduced number of X chromosome fragments spanning the IP1 breakpoints and (b) construct a mapping panel to assist in identifying regional DNA markers in the vicinity of the IP1 locus. By using this strategy, we have isolated three different IRS-PCR amplification products that map to a region between IP1 X chromosome translocation breakpoints. A total of nine DNA sequences have now been mapped to this region; using these DNA markers for PFGE analyses, we obtained a probe order DXS14-DXS422-MTHFDL1-DXS705. These DNA markers provide a starting point for identifying overlapping genomic sequences spanning the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should assist the molecular analysis of this locus.  相似文献   

7.
A t(X;9)(p11;q34) is reported in a girl with incontinentia pigmenti (IP). The X breakpoint is at p11.21. Although no similar case has been reported, this breakpoint may be significant insofar IP is considered an X-linked dominant mutation and could be of help in a specific X DNA probes study.  相似文献   

8.
Summary Linkage data for familial incontinentia pigmenti (IP2) and nine X chromosomal markers are reported. Previously found linkage between IP2 and the DXS52 locus is confirmed with the maximum lod score of 6.19 at a recombination fraction of 0.03. Linkage is also established with loci DXS134, DXS15 and DXS33. Multipoint analysis allows us to localize the IP2 locus outside a block of seven linked markers of the Xq28 region.  相似文献   

9.
The locus (IP2) for the hereditary form of incontinentia pigmenti (IP) has been mapped to Xq28 by linkage analysis. We studied three IP families with polymorphic markers in the Xq28 region. In two families we observed recombination between the marker loci and IP. In the third family no crossing overs were seen and linkage to the Xq28 region could not be excluded. The other IP locus (IP1) has been mapped to Xp 11.21, because of sporadic cases of IP with X-chromosomal alterations involving Xp11.21. To check whether this locus is linked to IP in these families, we used polymorphic markers in the Xp11 region. In all three families recombinations were observed, thus excluding linkage to this locus in these IP families.  相似文献   

10.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the basic molecular defect is unknown. We previously located the WAS gene between two DNA markers, DXS7 (Xp11.3) and DXS14 (Xp11), and mapped it to the proximal short arm of the human X chromosome (Kwan et al., 1988, Genomics 3:39-43). In this study, further mapping was performed on 17 WAS families with two additional RFLP markers, TIMP and DXS255. Our data suggest that DXS255 is closer to the WAS locus than any other markers that have been previously described, with a multipoint maximum lod score of Z = 8.59 at 1.2 cM distal to DXS255 and thus further refine the position of the WAS gene on the short arm of the X chromosome. Possible locations for the WAS gene are entirely confined between TIMP (Xp11.3) and DXS255 (Xp11.22). Use of these markers thus represents a major improvement in genetic prediction in WAS families.  相似文献   

11.
Somatic cell hybrids that retain derivative X chromosomes from women with sporadic incontinentia pigmenti (IP1) and de novo X/autosomal translocations with consistent breakpoints at Xp11.21 were constructed. An assembled hybrid panel was used to physically map DNA sequences in relationship to the IP breakpoint. DSX14 was found to map to region Xp11.21----p11.1. Regional assignments of 19 X-chromosomal loci were reviewed.  相似文献   

12.
We demonstrate that all the repeat elements representing the conserved loci DXF34 and DXS390 lie between the X;9 and the X;17 translocation breakpoints associated with incontinentia pigmenti type 1 (IP1). Sequence-tagged sites (STSs) at DXF34S1, DXS14, and DXS390 have been used to isolate YAC clones containing these loci, and a contig of approximately 2 Mb has been constructed. Patterns of hybridization observed in the YAC clones indicate that DXS390 comprises two distinct regions (A and B). The STS at DXS390 detects the A region and includes a polymorphic CA repeat (PIC = 0.25). This expansion of the cloned region around DXF34 and DXS390 will enable the isolation of additional conserved sequences that will help in understanding both the lesions underlying the pathogenesis of IP1 and the size and extent of the man-mouse homologous block defined by DXF34.  相似文献   

13.
Summary Two families with X-linked dominant hypophosphatemia (McKusick No. *30780) were investigated for linkage of the disease locus with several marker genes defined by cloned, single-copy DNA sequences derived from defined regions of the X chromosome. Close linkage was found with DNA markers DXS41 (p99-6) and DXS43 (pD2) at Xp22, suggesting a location of the HPDR gene on the distal short arm of the X chromosome.  相似文献   

14.
A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified.  相似文献   

15.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

16.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the molecular defect is unknown. In 15 families with WAS, seven restriction fragment length polymorphic loci from the X chromosome were used to map the disease locus. Of the eight intervals studied, the likelihood of the WAS gene lying between DXS7 (Xp11.3) and DXS14 (Xp11) was at least 128 times higher than that for any other interval. The most likely gene order is DXS84-OTC-DXS7-WAS-DXS14-DXS1-PGK-DXYS1. Close genetic linkage to DXS7 and DXS14 permits accurate prenatal diagnosis and carrier detection with greater than 98% confidence in fully informative WAS families.  相似文献   

17.
Summary Congenital stationary night blindness is characterized by disturbed or absent night vision that is always present at or shortly after birth and nonprogressive. The X-linked form of the disease (CSNBX; McKusick catalog no. 31050) differs from the autosomal types in that the former is frequently associated with myopia. X-chromosome-specific polymorphic DNA markers were used to carry out linkage analysis in three European families segregating for CSNBX. Close linkage without recombination was found between the disease locus and the anonymous locus DXS7, mapped to Xp11.3, assigning the mutation to the proximal short arm of the X chromosome. Linkage data obtained with markers flanking DXS7 provided further support for this localization of the gene locus. Thus, in addition to retinitis pigmentosa and Norrie disease, CSNBX represents the third well-known hereditary eye disease the locus of which is mapped on the proximal Xp and closely linked to DXS7.  相似文献   

18.
Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.  相似文献   

19.
Summary A linkage study of 24 families with hypohidrotic (anhidrotic) ectodermal dysplasia (HED) has been performed. The previously suggested linkage to DXYS1 has been confirmed, and linkage to probes DXS14 and DXS3 has been established. We suggest that the HED locus lies in the centromeric region between DXYS1 on the long arm and DXS14 on the short arm of the X chromosome, probably on proximal Xq.  相似文献   

20.
为确定一个X染色体显性遗传先天性眼球震颤家系的致病基因与X染色体的连锁关系, 选用X染色体上的DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192和DXS1232共8个微卫星DNA标记对该家系进行基因扫描与基因分型,并利用LINKAGE等软件包对基因分型结果进行分析,探讨该家系致病基因与X染色体的连锁关系。 两点连锁分析时X染色体短臂4个基因座最大LOD值均小于-1,不支持与该家系致病基因连锁; X染色体长臂4个基因座中最大LOD值达到2,提示存在较大的连锁可能性。该家系的致病基因可初步定位于X染色体长臂,且提示Xq26-Xq28区间附近可能是先天性眼球震颤一个共同的致病基因座,但区间范围仍较大,仍须进一步选择合适的微卫星标记进行精确的定位以缩小候选基因的筛查范围。Abstract: To investigate the relationship between X chromosome and obligatory gene of a pedigree with congenital nystagmus,we used the following markers: DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192 and DXS1232.Genome screening and genotyping were conducted in this pedigree of congenital nystagmus, and linkage analysis by LINKAGE package was used to determine the potential location. The linkage was not found on the Xp ( All LOD score <-1) but on Xq (the maximum LOD score=2). The related gene of this pedigree was located on the long arm of X chromosome. We demonstrate that Xq26-Xq28 is a common locus for CMN. It bring us closer to the identification of a gene responsible for X-linked CMN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号