首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.  相似文献   

2.
A chimeric receptor composed of the extracellular domain of the human T-cell antigen CD2 (T11) joined to the membrane-spanning segment and the intracellular tyrosine kinase domain of the human colony-stimulating factor 1 receptor (CSF-1R) was expressed in murine NIH 3T3 fibroblasts. Stimulation of these cells with monoclonal antibodies to CD2 induced phosphorylation of the chimeric glycoprotein on tyrosine, receptor downmodulation, and mitogenesis. In contrast, neither human CSF-1R nor the chimeric receptor was able to function in interleukin-2-dependent murine T cells. In fibroblasts, then, CSF-1 per se is not required for activation of the receptor kinase or for a biological response, whereas in T cells, CSF-1R may be unable to engage the downstream signal transduction machinery.  相似文献   

3.
Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163+CD64+ M2-polarized suppressor macrophages, skewing their differentiation toward CD14-CD1a+ dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.  相似文献   

4.
Protein minimization of the gp120 binding region of human CD4   总被引:2,自引:0,他引:2  
CD4 is an important component of the immune system and is also the cellular receptor for HIV-1. CD4 consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1-D4. Constructs consisting of all four extracellular domains of human CD4 as well as the first two domains (CD4D12) have previously been expressed and characterized. All of the gp120-binding residues are located within the first N-terminal domain (D1) of CD4. To date, it has not been possible to obtain domain D1 alone in a soluble and active form. Most residues in CD4 that interact with gp120 lie within the region 21-64 of domain D1 of CD4. On the basis of these observations and analysis of the crystal structure of CD4D12, a mutational strategy was designed to express CD4D1 and region 21-64 of CD4 (CD4PEP1) in Escherichia coli. K(D) values for the binding of CD4 analogues described above to gp120 were measured using a Biacore-based solution-phase competition binding assay. Measured K(D) values were 15 nM, 40 nM, and 26 microM for CD4D12, CD4D1, and CD4PEP1, respectively. All of the proteins interact with gp120 and are able to expose the 17b-binding epitope of gp120. Structural content was determined using CD and proteolysis. Both CD4D1 and CD4PEP1 were partially structured and showed an enhanced structure in the presence of the osmolyte sarcosine. The aggregation behavior of all of the proteins was characterized. While CD4D1 and CD4PEP1 did not aggregate, CD4D12 formed amyloid fibrils at neutral pH within a week at 278 K. These CD4 derivatives should be useful tools in HIV vaccine design and entry inhibition studies.  相似文献   

5.
CD44 is a transmembrane glycoprotein involved in various cell adhesion events, including lymphocyte migration, early hemopoiesis, and tumor metastasis. To examine the requirements of CD44 for signal delivery through the extracellular domain, we constructed a chimeric CD44 protein fused to the intracellular domain of Fas on its C-terminus. In cells expressing the CD44-Fas fusion protein, apoptosis could be induced by treatment with certain anti-CD44 mAbs alone, especially those recognizing the epitope group d, which has been previously shown to play a role in ligand binding, indicating that ligation of a specific region of the CD44 extracellular domain results in signal delivery. Of note was that appropriate ligation of the epitope h also resulted in the generation of apoptotic signal, although this region was not thought to be involved in ligand binding. In contrast, the so-called blocking anti-CD44 mAbs (epitope group f) that can abrogate the binding of hyaluronate (HA) failed to induce apoptosis even after further cross-linking with the secondary Ab, indicating that a mere mAb-induced oligomerization of the chimeric proteins is insufficient for signal generation. However, these blocking mAbs were instead capable of inhibiting apoptosis induced by nonblocking mAb (epitope group h). Furthermore, a chimeric protein bearing a mutation in the HA binding domain and hence lacking the ability to recognize HA was incapable of mediating the mAb-induced apoptosis, suggesting that the functional integrity of the HA binding domain is crucial to the signal generation in CD44.  相似文献   

6.
Antibody based manipulation of the CD137 (4‐1BB) co‐signaling pathway is an attractive option for the treatment of cancer and autoimmune disease. We developed a chimeric anti‐human CD137 monoclonal antibody (GG) and characterized its function. As a component of planned preclinical studies, we evaluated the binding of GG to activated peripheral blood mononuclear cells (PBMCs) from cynomolgus macaque and baboon against human. Interestingly, GG only recognized human CD137, while a commercial anti‐CD137 mAb (4B4‐1), recognized activated PBMCs from both human and non‐human primates (NHP). Subsequent analysis revealed that the amino acid sequence of CD137 is largely conserved between primate species (~95% identical), with the extracellular domain differing by only 9–10 amino acids. Based on these data, we generated mutant constructs in the extracellular domain, replacing NHP with human CD137 sequences, and identified 3 amino acids critical for GG binding. These residues are likely part of a conformational epitope, as a peptide spanning this region is unable to block mAb binding. These data demonstrate that subtle sequence variations of defined co‐stimulatory molecules amongst primate species can be employed as a strategy for mapping residues necessary for antibody binding to conformational epitopes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Chimeric and humanized antibodies with specificity for the CD33 antigen.   总被引:6,自引:0,他引:6  
L and H chain cDNAs of M195, a murine mAb that binds to the CD33 Ag on normal and leukemic myeloid cells, were cloned. The cDNAs were used in the construction of mouse/human IgG1 and IgG3 chimeric antibodies. In addition, humanized antibodies were constructed which combined the complementarity-determining regions of the M195 antibody with human framework and constant regions. The human framework was chosen to maximize homology with the M195 V domain sequence. Moreover, a computer model of M195 was used to identify several framework amino acids that are likely to interact with the complementarity-determining regions, and these residues were also retained in the humanized antibodies. Unexpectedly, the humanized IgG1 and IgG3 M195 antibodies, which have reshaped V regions, have higher apparent binding affinity for the CD33 Ag than the chimeric or mouse antibodies.  相似文献   

8.
To study the role of the cytoplasmic domain and particularly the tyrosine residues of the erythropoietin receptor (EpoR) in erythroid differentiation of human primary stem cells, we infected cord blood-derived CD34+ cells with retroviruses encoding chimeric receptors containing the extracellular domain of the prolactin receptor (PRLR) and the cytoplasmic domain of either the normal EpoR or a truncated EpoR devoid of tyrosine residues. Erythroid differentiation of the infected progenitors could thus be studied after stimulation by PRL. The complete PRLR was used to assess its ability to substitute for EpoR in erythroid differentiation. Typical erythroid day-14 colonies were observed from CD34+ cells grown in PRL when infected with any of the three viral constructs. These results demonstrate that: (i) the activation of the virally transduced PRLR leads to erythroid colony formation showing that erythroid terminal differentiation can be induced by a non-erythroid receptor in human progenitors; (ii) a chimeric receptor PRLR/EpoR is able to transduce a signal leading to terminal erythroid differentiation of human CD34+ cells; (iii) in contrast to results previously reported in murine models, tyrosine residues of the EpoR are not required for growth and terminal differentiation of human erythroid progenitors.  相似文献   

9.
Cluster determinant 4 (CD4) is a type I transmembrane glycoprotein of 58 kDa. It consists of an extracellular domain of 370 amino acids, a short transmembrane region, and a cytoplasmic domain of 40 amino acids at the C-terminal end. We investigated the structure of the 62 C-terminal residues of CD4, comprising its transmembrane and cytoplasmic domains. The five cysteine residues of this region have been replaced with serine and histidine residues in the polypeptide CD4mut. Uniformly 15N and 13C labeled protein was recombinantly expressed in E. coli and purified. Functional binding activity of CD4mut to protein VpU of the human immunodeficiency virus type 1 (HIV-1) was verified. Close to complete NMR resonance assignment of the 1H, 13C, and 15N spins of CD4mut was accomplished. The secondary structure of CD4mut in membrane simulating dodecylphosphocholine (DPC) micelles was characterized based on secondary chemical shift analysis, NOE-based proton-proton distances, and circular dichroism spectroscopy. A stable transmembrane helix and a short amphipathic helix in the cytoplasmic region were identified. The fractional helicity of the cytoplasmic helix appears to be stabilized in the presence of DPC micelles, although the extension of this helix is reduced in comparison to previous studies on synthetic peptides in aqueous solution. The role of the amphipathic helix and its potentially variable length is discussed with respect to the biological functions of CD4.  相似文献   

10.
Studies of mucins suggest that the structural effects of O-glycans are restricted to steric interactions between peptide-linked GalNAc residues and adjacent polypeptide residues. It has been proposed, however, that differential O-glycan sialylation alters the structure of the stalk-like region of the T cell co-receptor, CD8, and that this, in turn, modulates ligand binding (Daniels, M. A., Devine, L., Miller, J. D., Moser, J. M., Lukacher, A. E., Altman, J. D., Kavathas, P., Hogquist, K. A., and Jameson, S. C. (2001) Immunity 15, 1051-1061; Moody, A. M., Chui, D., Reche, P. A., Priatel, J. J., Marth, J. D., and Reinherz, E. L. (2001) Cell 107, 501-512). We characterize the glycosylation of soluble, chimeric forms of the alphaalpha- and alphabeta-isoforms of murine CD8 containing the O-glycosylated stalk of rat CD8alphaalpha, and we show that the stalk O-glycans are differentially sialylated in CHO K1 versus Lec3.2.8.1 cells (82 versus approximately 6%, respectively). Sedimentation analysis indicates that the Perrin functions, Pexp, which reflect overall molecular shape, are very similar (1.61 versus 1.54), whereas the sedimentation coefficients (s) of the CHO K1- and Lec3.2.8.1-derived proteins differ considerably (3.73 versus 3.13 S). The hydrodynamic properties of molecular models also strongly imply that the sialylated and non-sialylated forms of the chimera have parallel, equally highly extended stalks ( approximately 2.6 A/residue). Our analysis indicates that, as in the case of mucins, the overall structure of O-glycosylated stalk-like peptides is sialylation-independent and that the functional effects of differential CD8 O-glycan sialylation need careful interpretation.  相似文献   

11.
The IgE-binding site of the human low-affinity receptor for IgE (Fc epsilon RII/CD23) has previously been mapped to the extracellular domain between amino acid residues 160 and 287. We now have investigated which conformational epitope within this domain specifies the receptor-ligand interaction. The analysis of homolog-scanning mutants expressed in mammalian cells demonstrates that amino acid side chains that affect IgE binding are located in two discontinuous segments, between residues 165-190 and 224-256. The overall structure of the chimeric binding domains, as probed with 11 conformation-sensitive monoclonal antibodies, is generally not distorted, except by replacement of residues 165-183. In this region, disruption of binding function appears to be caused by global conformational constraints on the binding site. Substitution and deletion mutants demonstrate that six out of eight extracellular cysteines, Cys163, Cys174, Cys191, Cys259, Cys273, and Cys282, are necessary for IgE binding and are most likely involved in intramolecular disulfide bridges. We show that the Fc epsilon RII domain delineated by Cys163 and Cys282 encodes all the structural information required to form the IgE-binding site.  相似文献   

12.
Approximately 40 amino-terminal residues and 20 internal residues of CSF-1 purified from the media of cultured human pancreatic carcinoma (MIA PaCa) cells and of cultured murine L cells have been identified. Results indicated that the two subunits in each molecule of biologically active CSF-1 are identical in their amino-terminal portions. The twelve amino-terminal residues of MIA PaCa CSF-1 were found to be identical to those of human-urinary CSF-1, suggesting that the polypeptide portions of the two human proteins may be identical. Approximately 75% of the amino acids identified in both MIA PaCa CSF-1 and murine CSF-1 were found to be common to both. No homology to other proteins was observed. This study suggests a subunit polypeptide Mr nearer to 17K than to 26K predicted from cDNA.  相似文献   

13.
CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4(+) T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134(-) CXCR4(+) target cells in a manner analogous to CD4 augmentation of HIV infection.  相似文献   

14.
The novel sialomucin, CD164, functions as both an adhesion receptor on human CD34+ cell subsets in bone marrow and as a potent negative regulator of CD34+ hemopoietic progenitor cell proliferation. These diverse effects are mediated by at least two functional epitopes defined by the mAbs, 103B2/9E10 and 105A5. We report here the precise epitope mapping of these mAbs together with that of two other CD164 mAbs, N6B6 and 67D2. Using newly defined CD164 splice variants and a set of soluble recombinant chimeric proteins encoded by exons 1-6 of the CD164 gene, we demonstrate that the 105A5 and 103B2/9E10 functional epitopes map to distinct glycosylated regions within the first mucin domain of CD164. The N6B6 and 67D2 mAbs, in contrast, recognize closely associated and complex epitopes that rely on the conformational integrity of the CD164 molecule and encompass the cysteine-rich regions encoded by exons 2 and 3. On the basis of their sensitivities to reducing agents and to sialidase, O-sialoglycoprotease, and N-glycanase treatments, we have characterized CD164 epitopes and grouped them into three classes by analogy with CD34 epitope classification. The class I 105A5 epitope is sialidase, O-glycosidase, and O-sialoglycoprotease sensitive; the class II 103B2/9E10 epitope is N-glycanase, O-glycosidase, and O-sialoglycoprotease sensitive; and the class III N6B6 and 67D2 epitopes are not removed by such enzyme treatments. Collectively, this study indicates that the previously observed differential expression of CD164 epitopes in adult tissues is linked with cell type specific post-translational modifications and suggests a role for epitope-associated carbohydrate structures in CD164 function.  相似文献   

15.
Interleukin-16 (IL-16) activates CD4(+) cells, possibly by direct interaction with CD4. IL-16 structure and function are highly conserved across species, suggesting similar conservation of a putative IL-16 binding site on CD4. Comparison of the human CD4 amino acid sequence with that of several different species revealed that immunoglobulin-like domain 4 is the most conserved extracellular region. Potential interaction of this domain with IL-16 was studied by testing murine D4 sequence-based oligopeptides for inhibition of IL-16 chemoattractant activity and inhibition of IL-16 binding to CD4 in vitro. Three contiguous 12-residue D4 region peptides (designated A, B, and C) blocked IL-16 chemoattractant activity, with peptide B the most potent. Peptides A and B were synergistic for inhibition, but peptide C was not. Peptides A and B also blocked IL-16 binding to CD4 in vitro, whereas peptide C did not. CD4, in addition to its known function as a receptor for major histocompatibility complex class II, contains a binding site for IL-16 in the D4 domain. The D4 residues required for IL-16 binding overlap those previously shown to participate in CD4-CD4 dimerization following class II major histocompatibility complex binding, providing a mechanistic explanation for the known function of IL-16 to inhibit the mixed lymphocyte reaction.  相似文献   

16.
CD200Fc, a chimeric molecule including the extracellular domain of CD200 and a murine IgG2a Fc region, regulates immune responses following engagement of a cell surface receptor, CD200R, expressed on cells of the myeloid and T cell lineage. A recent report focused attention on a family of CD200Rs, but concluded that only one member used CD200 as its ligand. We have also cloned and sequenced a family of CD200Rs, but identify an amino terminus to two of the three isoforms not recognized by previous researchers. We show by FACS, using FITC-labeled CD200Fc, that COS7 cells transfected with all CD200R isoforms bind CD200 as ligand, although the functional consequences of this binding likely differs between the different isoforms. mAbs directed against the CD200 R1/R4 isoforms altered IL-2/IL-4 cytokine production and suppressed CTL responses in a fashion comparable to CD200Fc, with a significantly lesser effect seen following addition of anti-CD200 R2/R3.  相似文献   

17.
Formation of the cytolytic membrane attack complex of complement on host cells is inhibited by the membrane-bound glycoprotein, CD59. The inhibitory activity of CD59 is species restricted, and human CD59 is not effective against rat complement. Previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues responsible for the species selective function of human CD59 map to a region contained between positions 40 and 66 in the primary structure. By comparative analysis of rat and human CD59 models and by mutational analysis of candidate residues, we now identify the individual residues within the 40-66 region that confer species selective function on human CD59. All nonconserved residues within the 40-66 sequence were substituted from human to rat residues in a series of chimeric human/rat CD59 mutant proteins. Functional analysis revealed that the individual human to rat residue substitutions F47A, T51L, R55E, and K65Q each produced a mutant human CD59 protein with enhanced rat complement inhibitory activity with the single F47A substitution having the most significant effect. Interestingly, the side chains of the residues at positions 47, 51, and 55 are all located on the short single helix (residues 47-55) of CD59 and form an exposed continuous strip parallel to the helix axis. A single human CD59 mutant protein containing rat residue substitutions at all three helix residues produced a protein with species selective activity comparable to that of rat CD59. We further found that synthetic peptides spanning the human CD59 helix sequence were able to inhibit the binding of human CD59 to human C8, but had little effect on the binding of rat CD59 to rat C8.  相似文献   

18.
A strategy for overexpression in Escherichia coli of the extracellular immunoglobulin domain of human CD8alpha was devised using codon usage alterations in the 5' region of the gene, designed so as to prevent the formation of secondary structures in the mRNA. A fragment of CD8alpha, comprising residues 1-120 of the mature protein, excluding the signal peptide and the membrane-proximal stalk region, was recovered from bacterial inclusion bodies and refolded to produce a single species of homodimeric, soluble receptor. HLA-A2 heavy chain, beta2-microglobulin and a synthetic peptide antigen corresponding to the pol epitope from HIV-1 were also expressed in E. coli, refolded and purified. CD8alpha/HLA-A2 complexes were formed in solution and by co-crystallization with a stoichiometry of one CD8alpha alpha dimer to one HLA-A2-peptide unit.  相似文献   

19.
Grinthal A  Guidotti G 《Biochemistry》2002,41(6):1947-1956
Members of the ecto-nucleoside triphosphate diphosphohydrolase (eNTPDase) family exhibit distinctive substrate specificities, but how such specificities are achieved by enzymes with identical putative catalytic domains is unknown. Previously we showed that H59G substitution changes CD39 from an apyrase to an adenosine diphosphatase (ADPase) in a manner that depends on intact associations of both transmembrane domains with the membrane. Here we show that the extracellular domain of CD39L1 ecto-adenosine triphosphatase (ecto-ATPase) has the same 3:1 ATP:ADP hydrolysis ratio as the extracellular domain of CD39, suggesting that the transmembrane domains are required to confer the native substrate specificities on each enzyme. As in CD39, H50G substitution has little effect on the activity of the CD39L1 extracellular domain or solubilized monomers. However, H50G substitution diminishes both ATPase and ADPase activities of native CD39L1, in contrast to its selective effect on ATPase activity in CD39, suggesting that the transmembrane domains confer different ADP hydrolysis mechanisms on CD39 and CD39L1. We then show that the transmembrane domains of CD39L1 can substitute for those of CD39 in conferring native CD39 substrate specificity and regulation of H59 but that the transmembrane domains of CD39 confer neither CD39 nor CD39L1 properties on the CD39L1 extracellular domain. These results suggest that non-apyrase conserved region residues in the extracellular domain contain the information specifying CD39 native properties but have a nonspecific requirement for two transmembrane domains to manifest the information.  相似文献   

20.
The heterophilic CD2-CD58 adhesion interface contains interdigitating residues that impart high specificity and rapid binding kinetics. To define the hot spot of this counter-receptor interaction, we characterized CD2 adhesion domain variants harboring a single mutation of the central Tyr86 or of each amino acid residue forming a salt link/hydrogen bond. Alanine mutations at D31, D32 and K34 on the C strand and K43 and R48 on the C' strand reduce affinity for CD58 by 47-127-fold as measured by isothermal titration calorimetry. The Y86A mutant reduces affinity by approximately 1000-fold, whereas Y86F is virtually without effect, underscoring the importance of the phenyl ring rather than the hydroxyl moiety. The CD2-CD58 crystal structure offers a detailed view of this key functional epitope: CD2 D31 and D32 orient the side-chain of CD58 K34 such that CD2 Y86 makes hydrophobic contact with the extended aliphatic component of CD58 K34 between CD2 Y86 and CD58 F46. The elucidation of this hot spot provides a new target for rational design of immunosuppressive compounds and suggests a general approach for other receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号