首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Following a strategy similar to that used in baker’s yeast (Herrgård et al. Nat Biotechnol 26:1155–1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella typhimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419–425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved ‘community consensus’ reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at http://humanmetabolism.org/ and in SBML format at Biomodels (http://identifiers.org/biomodels.db/MODEL1109130000). This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.  相似文献   

2.
This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens—mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184–187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803–4807, 1983; Herrera-Estrella et al. in EMBO J 2:987–995, 1983; Vasil in Plant Cell Rep 27:1432–1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.  相似文献   

3.
Alignment is a spontaneous behavioral preference of particular body orientation that may be seen in various vertebrate or invertebrate taxa. Animals often optimize their positions according to diverse directional environmental factors such as wind, stream, slope, sun radiation, etc. Magnetic alignment represents the simplest directional response to the geomagnetic field and a growing body of evidence of animals aligning their body positions according to geomagnetic lines whether at rest or during feedings is accumulating. Recently, with the aid of Google Earth application, evidence of prevailing North–South (N–S) body orientation of cattle on pastures was published (Begall et al. PNAS 105:13451–13455, 2008; Burda et al. PNAS 106:5708–5713, 2009). Nonetheless, a subsequent study from a different laboratory did not confirm this phenomenon (Hert et al. J Comp Physiol A 197:677–682, 2011). The aim of our study was to enlarge the pool of independently gained data on this remarkable animal behavior. By satellite snapshots analysis and using blinded protocol we scored positions of 2,235 individuals in 74 herds. Our results are in line with the original findings of prevailing N–S orientation of grazing cattle. In addition, we found that mutual distances between individual animals within herds (herd density) affect their N–S preference—a new phenomenon giving some insight into biological significance of alignment.  相似文献   

4.
The development of new anti-neoplastic drugs is a key issue for cancer chemotherapy due to the reality that, most likely, certain cancer cells are resistant to current chemotherapy. The past two decades have witnessed tremendous advances in our understanding of the pathogenesis of cancer. These advances have allowed identification new targets as oncogenes, tumor supressor genes and the possible implication of the mitochondria (Fulda et al. Nat Rev Drug Discov 9:447–464, 2010). Annonaceous Acetogenins (ACGs) have been described as the most potent inhibitors of the respiratory chain because of their interaction with mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116–120, 1994; Zafra-Polo et al. Phytochemistry 42:253–271, 1996; Miyoshi et al. Biochim Biophys Acta 1365:443–452, 1998; Tormo et al. Arch Biochem Biophys 369:119–126, 1999; Motoyama et al. Bioorg Med Chem Lett 12:2089–2092, 2002). To explore a possible application of natural products from Annonaceous plants to cancer treatment, we have selected four bis-tetrahydrofuranic ACGs, three from Annona cherimolia (cherimolin-1, motrilin and laherradurin) and one from Rollinia mucosa (rollinianstatin-1) in order to fully describe their mechanisms responsible within the cell (Fig. 1). In this study, using a hepato-carcinoma cell line (HepG2) as a model, we showed that the bis-THF ACGs caused cell death through the induction of the apoptotic mitochondrial pathway. Their potency and behavior were compared with the classical mitochondrial respiratory chain Complex I inhibitor rotenone in every apoptotic pathway step.
Fig. 1
ACGs structures  相似文献   

5.
Residual dipolar couplings (RDCs) are NMR parameters that provide both structural and dynamic information concerning inter-nuclear vectors, such as N–HN and Cα–Hα bonds within the protein backbone. Two approaches for extracting this information from RDCs are the model free analysis (MFA) (Meiler et al. in J Am Chem Soc 123:6098–6107, 2001; Peti et al. in J Am Chem Soc 124:5822–5833, 2002) and the direct interpretation of dipolar couplings (DIDCs) (Tolman in J Am Chem Soc 124:12020–12030, 2002). Both methods have been incorporated into iterative schemes, namely the self-consistent RDC based MFA (SCRM) (Lakomek et al. in J Biomol NMR 41:139–155, 2008) and iterative DIDC (Yao et al. in J Phys Chem B 112:6045–6056, 2008), with the goal of removing the influence of structural noise in the MFA and DIDC formulations. Here, we report a new iterative procedure entitled Optimized RDC-based Iterative and Unified Model-free analysis (ORIUM). ORIUM unifies theoretical concepts developed in the MFA, SCRM, and DIDC methods to construct a computationally less demanding approach to determine these structural and dynamic parameters. In all schemes, dynamic averaging reduces the actual magnitude of the alignment tensors complicating the determination of the absolute values for the generalized order parameters. To readdress this scaling issue that has been previously investigated (Lakomek et al. in J Biomol NMR 41:139–155, 2008; Salmon et al. in Angew Chem Int Edit 48:4154–4157, 2009), a new method is presented using only RDC data to establish a lower bound on protein motion, bypassing the requirement of Lipari–Szabo order parameters. ORIUM and the new scaling procedure are applied to the proteins ubiquitin and the third immunoglobulin domain of protein G (GB3). Our results indicate good agreement with the SCRM and iterative DIDC approaches and signify the general applicability of ORIUM and the proposed scaling for the extraction of inter-nuclear vector structural and dynamic content.  相似文献   

6.

Purpose

This article discusses the choice of stakeholder categories and the integration of stakeholders into participatory processes to define impact categories and select indicators.

Methods

We undertook a literature review concerning the roles and the importance of stakeholders in participatory processes, and the use of such processes in environmental and social LCAs (Biswas et al. Int J Life Cycle Assess 3(4):184-190, 1998; Sonnemann et al. Int J Life Cycle Assess 6(6):325-333, 2001; Baldo Int J Life Cycle Assess 7(5):269-275, 2002; James et al. Int J Life Cycle Assess 7(3):151-157, 2002; Bras-Kapwijk Int J Life Cycle Assess 8(5):266-272, 2003; Mettier et al. Int J Life Cycle Assess 11(6):468-476, 2006). As part of the French National Research Agency Piscenlit project, we adapted the Principle, Criteria, Indicator (PCI) method (Rey-Valette et al. 2008), which is an assessment method of sustainable development, as a way to integrate the participatory approach into Social Life Cycle Assessment (SLCA) methodology, mainly at the impact definition stage.

Results and discussion

Different views of participation were found in the literature; there is no consensual normative approach for the implication of stakeholders in LCA development. Some attempts have been made to integrate stakeholders into environmental LCAs but these attempts have not been generalized. However, they strongly emphasize the interrelationship between research on the growing integration of stakeholders and on the choice of stakeholders. We then propose criteria from stakeholder theory (Freeman 1984; Mitchell et al. Acad Manage Rev 22(4):853-886, 1997; Geibler et al. Bus Strat Environ 15:334-346, 2006) in order to identify relevant stakeholders for SLCA participatory approach. The adaptation of the PCI method to Principles, Impacts, and Indicators (PII) enables stakeholders to express themselves and hence leads to definitions of relevant social indicators that they can appropriate. The paper presents results regarding the selection of stakeholders but no specific results regarding the choice of impact categories and indicators.

Conclusions and recommendations

Integrating a participatory approach into SLCAs is of interest at several levels. It enables various factors to be taken into account: plurality of stakeholder interests, local knowledge, and impact categories that make sense for stakeholders in different contexts. It also promotes dialogue and simplifies the search for indicators. However, it requires a multidisciplinary approach and the integration of new knowledge and skills for the SLCA practitioners.  相似文献   

7.
Joseph G. Meert 《Evolution》2012,5(4):547-554
During the voyage of the H.M.S. Beagle, Charles Darwin quickly realized that geographic isolation led to significant changes in the adaptation of local flora and fauna (Darwin 1859). Genetic isolation is one of the well-known mechanisms by which adaptation (allopatric speciation) can occur (Palumbi, Annu Rev Ecol Syst 25:547?C72, 1994; Ricklefs, J Avian Biol 33:207?C11, 2002; Burns et al., Evolution 56:1240?C52, 2002; Hendry et al., Science 290:516?C8, 2009). Evolutionary changes can also occur when landmasses converge or are ??bridged.?? An important and relatively recent (Pliocene Epoch) example known as the ??Great American Biotic Interchange?? allowed for the migration of previously isolated species into new ecological niches between North and South America (Webb 1985, Ann Mo Bot Gard 93:245?C57, 2006; Kirby and MacFadden, Palaeogeogr Palaeoclimatol Palaeoecol 228:193?C202, 2005). Geographic isolation (vicariance) or geographic merging (geodispersal) can occur for a variety of reasons (sea level rise, splitting of continents, mountain building). In addition, the growth of a large supercontinent (or breakup) may change the climatic zonation on the globe and form a different type of barrier for species migration. This short review paper focuses on changing paleogeography throughout the Phanerozoic and the close ties between paleogeography and the evolutionary history of life on Earth.  相似文献   

8.
Eukaryotic cells respond to stress caused by the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum by activating the intracellular signaling pathways referred to as the unfolded protein response (UPR). In metazoans, UPR consists of three parallel branches, each characterized by its stress sensor protein, IRE1, ATF6, and PERK, respectively. In Drosophila, IRE1/XBP1 pathway is considered to function as a major branch of UPR; however, its physiological roles during the normal development and homeostasis remain poorly understood. To visualize IRE1/XBP1 activity in fly tissues under normal physiological conditions, we modified previously reported XBP1 stress sensing systems (Souid et al., Dev Genes Evol 217: 159–167, 2007; Ryoo et al., EMBO J 26: 242-252, 2007), based on the recent reports regarding the unconventional splicing of XBP1/HAC1 mRNA (Aragon et al., Nature 457: 736–740, 2009; Yanagitani et al., Mol Cell 34: 191–200, 2009; Science 331: 586–589, 2011). The improved XBP1 stress sensing system allowed us to detect new IRE1/XBP1 activities in the brain, gut, Malpighian tubules, and trachea of third instar larvae and in the adult male reproductive organ. Specifically, in the larval brain, IRE1/XBP1 activity was detected exclusively in glia, although previous reports have largely focused on IRE1/XBP1 activity in neurons. Unexpected glial IRE1/XBP1 activity may provide us with novel insights into the brain homeostasis regulated by the UPR.  相似文献   

9.
Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins (Lee Archiv Pharm Res 33(2): 181–187, 2010), but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover (Eisenmesser et al. Science 295(5559): 1520–1523, 2002; Eisenmesser et al. Nature 438(7064): 117–121, 2005). Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment (Takami et al. Extremophiles 8(5): 351–356, 2004). This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.  相似文献   

10.
Production of doubled haploids (DHs) is a convenient tool to obtain pure lines for breeding purposes. Until now, the easiest and most useful approach to obtain pepper DHs is via anther culture. However, this method has an associated possibility of producing calli from anther wall tissues that would be coexisting in the anther locule with embryos derived from microspores. Using two established protocols for anther culture, Dumas de Vaulx et al. (Agronomie 2:983–988, 1981) and Supena et al. (Sci Hort 107:226–232, 2006a; Plant Cell Rep 25:1–10, 2006b) callus and embryo development was assessed in four sweet pepper cultivars. For all genotypes tested, the protocol of Dumas de Vaulx et al. (Agronomie 2:983–988, 1981) promoted both embryo development and callus growth, whereas the protocol of Supena et al. (Sci Hort 107:226–232, 2006a; Plant Cell Rep 25:1–10, 2006b) produced no callus but only embryos. However, differences in embryo production were observed among these genotypes. In parallel, anthers were exposed to a 35 °C inductive heat shock for 4, 8, 12 and 16 days, prior to culture at 25 °C. The duration of the heat shock had significant effects in embryo production, but also in callus generation. Callus generation increased with prolonged exposures to 35 °C. Embryo and callus origin was analyzed by flow cytometry, light microscopy and molecular markers. Tests conducted demonstrated a gametophytic origin for all of the embryos tested, and a sporophytic origin for all of the calli. Together, our results reveal that culture conditions have a significant influence on the presence of calli derived from anther walls, which could be minimized by reducing heat shock exposure and/or using a shed-microspore approach.  相似文献   

11.
MYH9 has been proposed as a major genetic risk locus for a spectrum of nondiabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African-specific missense mutations (S342G and I384M) in the neighboring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. The APOL1 gene product, apolipoprotein L-1, has been studied for its roles in trypanosomal lysis, autophagic cell death, lipid metabolism, as well as vascular and other biological activities. We also show that the distribution of these newly identified APOL1 risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to MYH9. Mapping by admixture linkage disequilibrium (MALD) localized an interval on chromosome 22, in a region that includes the MYH9 gene, which was shown to contain African ancestry risk variants associated with certain forms of ESKD (Kao et al. 2008; Kopp et al. 2008). MYH9 encodes nonmuscle myosin heavy chain IIa, a major cytoskeletal nanomotor protein expressed in many cell types, including podocyte cells of the renal glomerulus. Moreover, 39 different coding region mutations in MYH9 have been identified in patients with a group of rare syndromes, collectively termed the Giant Platelet Syndromes, with clear autosomal dominant inheritance, and various clinical manifestations, sometimes also including glomerular pathology and chronic kidney disease (Kopp 2010; Sekine et al. 2010). Accordingly, MYH9 was further explored in these studies as the leading candidate gene responsible for the MALD signal. Dense mapping of MYH9 identified individual single nucleotide polymorphisms (SNPs) and sets of such SNPs grouped as haplotypes that were found to be highly associated with a large and important group of ESKD risk phenotypes, which as a consequence were designated as MYH9-associated nephropathies (Bostrom and Freedman 2010). These included HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies (Bostrom and Freedman 2010). The MYH9 SNP and haplotype associations observed with these forms of ESKD yielded the largest odds ratios (OR) reported to date for the association of common variants with common disease risk (Winkler et al. 2010). Two specific MYH9 variants (rs5750250 of S-haplotype and rs11912763 of F-haplotype) were designated as most strongly predictive on the basis of Receiver Operating Characteristic analysis (Nelson et al. 2010). These MYH9 association studies were then also extended to earlier stage and related kidney disease phenotypes and to population groups with varying degrees of recent African ancestry admixture (Behar et al. 2010; Freedman et al. 2009a, b; Nelson et al. 2010), and led to the expectation of finding a functional African ancestry causative variant within MYH9. However, despite intensive efforts including re-sequencing of the MYH9 gene no suggested functional mutation has been identified (Nelson et al. 2010; Winkler et al. 2010). This led us to re-examine the interval surrounding MYH9 and to the detection of novel missense mutations with predicted functional effects in the neighboring APOL1 gene, which are significantly more associated with ESKD than all previously reported SNPs in MYH9.  相似文献   

12.
Legionella pneumophila is the primary cause of the legionellosis diseases (90 %) (Yu et al. in J Infect Dis 186:127–128, 2002; Doleans et al. in J Clin Microbiol 42:458–460, 2004; Den Boer et al. in Clin Microbiol Infect 14:459–466, 2008). In this study, methodologies based on molecular biology were developed in order to provide a quick diagnosis of the bacterial presence in water samples of Spain. Multiplex real-time polymerase chain reaction assays were realized to target the 16S rRNA and macrophage infectivity potentiator (mip) genes of, respectively, Legionella spp. and L. pneumophila including in the design of an internal control. The results obtained by the culture and the gene amplification methods agreed in 94.44 % for the 16S rRNA gene, and a concordance of 66.67 % of the cases was obtained for the mip gene.  相似文献   

13.
Yuan Wu  Li Guo  Wentao Li  Xihong Cui  Jin Chen 《Plant and Soil》2014,380(1-2):441-444

Introduction

In a recent paper, Tanikawa et al. Plant Soil 373:317–327, (2013) reported a considerable impact of root orientation on the accuracy of root detection and root diameter estimation by ground-penetrating radar (GPR).

Methods

In Tanikawa et al. Plant Soil 373:317–327, (2013), buried root samples in a sand box were scanned from multiple cross angles between root orientation and GPR transecting line under controlled conditions. Changes in radar waveform parameter of roots to different cross angles were investigated.

Results

Tanikawa et al. Plant Soil 373:317–327, (2013) clarified that 1) the variation in amplitude area (a signal strength related waveform parameter) to different cross angles fitted a sinusoidal waveform; and 2) the impact of root orientation on root diameter estimation by GPR could be mathematically corrected by applying a grid transect survey. However, we found that the quantitative relationship established in Tanikawa et al. Plant Soil 373:317–327, (2013) between amplitude area and cross angle was incorrect, and the application of a grid transect survey still underestimated root diameter.

Conclusion

The change in amplitude area to cross angle between transecting line and root orientation fits a sinusoidal waveform but different to that reported in Tanikawa et al. Plant Soil 373:317–327, (2013). The polarization of GPR wave may explain such sinusoidal variation in amplitude area to cross angle. The effect of root orientation on GPR-based root diameter estimation remains to be calibrated.  相似文献   

14.
Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. In this regard, one of the major focuses of cancer immunotherapy has been the design of vaccines promoting strong tumor-specific cytotoxic T lymphocyte responses in cancer patients. Here, dendritic cells (DCs) play a pivotal role as they are regarded as nature’s adjuvant and as such have become the natural agents for antigen delivery in order to finally elicit strong T cell responses (Villadangos and Schnorrer in Nat Rev Immunol 7:543–555, 2007; Melief in Immunity 29:372–383, 2008; Palucka and Banchereau in Nat Rev Cancer 12:265–277, 2012; Vacchelli et al. in Oncoimmunology 2:e25771, 2013; Galluzzi et al. in Oncoimmunology 1:1111–1134, 2012). Therefore, many investigators are actively pursuing the use of DCs as an efficient way of inducing anticancer immune responses. Nowadays, DCs can be generated at a large scale in closed systems, yielding sufficient numbers of cells for clinical application. In addition, with the identification of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, a whole range of strategies using DCs for immunotherapy have been designed and tested in clinical studies. Despite the evidence that DCs loaded with tumor-associated antigens can elicit immune responses in vivo, clinical responses remained disappointingly low. Therefore, optimization of the cellular product and route of administration was urgently needed. Here, we review the path we have followed in the development of TriMixDC-MEL, a potent DC-based cellular therapy, discussing its development as well as further modifications and applications.  相似文献   

15.
16.
Sensory neurons in vertebrates are derived from two embryonic transient cell sources: neural crest (NC) and ectodermal placodes. The placodes are thickenings of ectodermal tissue that are responsible for the formation of cranial ganglia as well as complex sensory organs that include the lens, inner ear, and olfactory epithelium. The NC cells have been indicated to arise at the edges of the neural plate/dorsal neural tube, from both the neural plate and the epidermis in response to reciprocal interactions Moury and Jacobson (Dev Biol 141:243?C253, 1990). NC cells migrate throughout the organism and give rise to a multitude of cell types that include melanocytes, cartilage and connective tissue of the head, components of the cranial nerves, the dorsal root ganglia, and Schwann cells. The embryonic definition of these two transient populations and their relative contribution to the formation of sensory organs has been investigated and debated for several decades (Basch and Bronner-Fraser, Adv Exp Med Biol 589:24?C31, 2006; Basch et al., Nature 441:218?C222, 2006) review (Baker and Bronner-Fraser, Dev Biol 232:1?C61, 2001). Historically, all placodes have been described as exclusively derived from non-neural ectodermal progenitors. Recent genetic fate-mapping studies suggested a NC contribution to the olfactory placodes (OP) as well as the otic (auditory) placodes in rodents (Murdoch and Roskams, J Neurosci Off J Soc Neurosci 28:4271?C4282, 2008; Murdoch et al., J Neurosci 30:9523?C9532, 2010; Forni et al., J Neurosci Off J Soc Neurosci 31:6915?C6927, 2011b; Freyer et al., Development 138:5403?C5414, 2011; Katoh et al., Mol Brain 4:34, 2011). This review analyzes and discusses some recent developmental studies on the OP, placodal derivatives, and olfactory system.  相似文献   

17.
Myoepithelioma is an extremely rare condition that accounts for 1–1.5 % of salivary gland tumors. It was formerly regarded as a subtype of pleomorphic adenoma, in which myoepithelial structural components predominated, but was listed as a separate disease entity in the 1991 World Health Organization classification (Seifert in Histological typing of salivary gland tumours. Springer, Berlin, 1991). Its histology is highly varied and recurrence is frequent (El-Naggar et al. in J Larygol Otol 103:1192–1197, 1989), with cases of malignant transformation having been reported (Seifert in Histological typing of salivary gland tumours. Springer, Berlin, 1991; Barnes et al. in Pathology and Genetics of head and neck tumours. IARC Press, Lyon, 2005), making this a difficult tumor to control in many cases. This is thought to be due to the multiple differentiation potential of myoepithelial cells, but the details are unknown. There have been a number of reports of the establishment of cell lines (Shirasuna et al. Cancer. 45:297–305, 1980; Jaeger et al. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84:663–667, 1997), but numerous points remain unclear. We established a myoepithelial cell line designated METON, and investigated its characteristics. METON consists of cells with two different morphologies: spindle-shaped cells and epithelial-like cells. Then. we also used single-cell cloning method to establish various subclones (epithelial-like, spindle-like, and mixed epithelial-like/spindle-like cell lines). Among these, pluripotency markers were expressed by the mixed epithelial-like/spindle-like cell lines. The newly established cell line expressing these pluripotency markers will be extremely useful for elucidating the diverse histologies of salivary gland tumors.  相似文献   

18.
The peristimulus time histogram (PSTH) and its more continuous cousin, the spike density function (SDF) are staples in the analytic toolkit of neurophysiologists. The former is usually obtained by binning spike trains, whereas the standard method for the latter is smoothing with a Gaussian kernel. Selection of a bin width or a kernel size is often done in an relatively arbitrary fashion, even though there have been recent attempts to remedy this situation (DiMatteo et al., Biometrika 88(4):1055–1071, 2001; Shimazaki and Shinomoto 2007a, Neural Comput 19(6):1503–1527, 2007b, c; Cunningham et al. 2008). We develop an exact Bayesian, generative model approach to estimating PSTHs. Advantages of our scheme include automatic complexity control and error bars on its predictions. We show how to perform feature extraction on spike trains in a principled way, exemplified through latency and firing rate posterior distribution evaluations on repeated and single trial data. We also demonstrate using both simulated and real neuronal data that our approach provides a more accurate estimates of the PSTH and the latency than current competing methods. We employ the posterior distributions for an information theoretic analysis of the neural code comprised of latency and firing rate of neurons in high-level visual area STSa. A software implementation of our method is available at the machine learning open source software repository (www.mloss.org, project ‘binsdfc’).  相似文献   

19.
This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O2. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O2 evolution: Ca2+ and inorganic carbon. In this scheme, inorganic carbon (HCO3 ?) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca2+ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O2. In Phase 2, PODCA is regenerated.  相似文献   

20.
Block (Trends Cogn Sci 7:285–286, 2003) and Prinz (PSYCHE 12:1–19, 2006) have defended the idea that SSD perception remains in the substituting modality (auditory or tactile). Hurley and Noë (Biol Philos 18:131–168, 2003) instead argued that after substantial training with the device, the perceptual experience that the SSD user enjoys undergoes a change, switching from tactile/auditory to visual. This debate has unfolded in something like a stalemate where, I will argue, it has become difficult to determine whether the perception acquired through the coupling with an SSD remains in the substituting or the substituted modality. Within this puzzling deadlock two new approaches have been recently suggested. Ward and Meijer (Conscious Cogn 19:492–500, 2010) describe SSD perception as visual-like but characterize it as a kind of artificially induced synaesthesia. Auvray et al. (Perception 36:416–430, 2007) and Auvray and Myin (Cogn Sci 33:1036–1058, 2009) suggest that SSDs let their users experience a new kind of perception. Deroy and Auvray (forthcoming) refine this position, and argue that this new kind of perception depends on pre-existing senses without entirely aligning with any of them. So, they have talked about perceptual experience in SSDs as going "beyond vision". In a similar vein, MacPherson (Oxford University Press, New York, 2011a) claims that “if the subjects (SSD users) have experiences with both vision-like and touch-like representational characteristics then perhaps they have a sense that ordinary humans do not” (MacPherson in Oxford University Press, New York, 2011a, p. 139).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号