首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang Q  Lu Z  Singh D  Raj JU 《Cell proliferation》2012,45(4):335-344

Objective

Recent studies have indicated a role of epigenetic phenomena in pathogenesis of pulmonary hypertension, but in foetal pulmonary artery smooth muscle cell (PASMC) proliferation this is still largely unknown. G9a is a key enzyme for histone H3 dimethylation at position lysine‐9. In this study, we have investigated the function of G9a in ovine foetal PASMC proliferation, migration and contractility.

Material and methods

Cell proliferation was measured by cell counting and BrdU incorporation assay and cell cycle analysis was performed by flow cytometry. Expression of cell cycle‐related genes was determined by real‐time PCR and the wound‐healing scratch assay was used to measure cell migration. A gel contraction assay was used to determine contractility of foetal PASMCs. Global DNA methylation was measured by liquid chromatography‐mass spectroscopy.

Results

Inhibition of G9a by its inhibitor BIX‐01294 reduced proliferation of foetal PASMCs and induced cell cycle arrest in G1 phase. This was accompanied by increased p21 expression, but not p53 and other cell cycle‐related genes. Treatment of foetal PASMCs with BIX‐01294 inhibited platelet‐derived growth factor‐induced cell proliferation and migration. Contractility of foetal PASMCs was also markedly inhibited by BIX‐01294. Expression of calponin and ROCK‐II proteins was reduced by BIX‐01294 in a dose‐dependent manner and BIX‐01294 significantly increased global methylation level in the foetal PASMCs.

Conclusion

Our results demonstrate for the first time that histone lysine methylation is involved in cell proliferation, migration, contractility and global DNA methylation in foetal PASMCs. Further understanding of this mechanism may provide insight into proliferative vascular disease in the lungs.  相似文献   

2.
《Theriogenology》2013,79(9):1929-1938
The objective was to investigate the relationship between histone H3 lysine 9 (H3K9) dimethylation (me2) and the histone methyltransferase EHMT2 (also known as G9A) in ovine embryos cloned by somatic cell nuclear transfer (SCNT). Levels of H3K9me2 or EHMT2 were detected (with immunostaining) and compared between SCNT and IVF-derived preimplantation embryos. In one-cell embryos, SCNT zygotes had significantly higher levels of H3K9me2 and EHMT2 than IVF zygotes. In cloned embryos, H3K9me2 remained hypermethylated relative to IVF embryos at two-cell and late developmental stages (morula and blastocyst), with no difference (P > 0.05) between IVF and SCNT embryos in EHMT2 levels from two-cell to blastocyst stages. The EHMT2-specific inhibitor, BIX01294, reduced global H3K9me2 levels in cultured ovine cells or SCNT embryos, but it was not appropriate for somatic cell nuclear transfer because of its high cellular toxicity. We inferred that abnormal H3K9me2 hypermethylation in SCNT embryos may not completely arise from EHMT2 expression error.  相似文献   

3.
4.
5.

Background

Pluripotency of embryonic stem (ES) cells is controlled in part by chromatin-modifying factors that regulate histone H3 lysine 4 (H3K4) methylation. However, it remains unclear how H3K4 demethylation contributes to ES cell function.

Results

Here, we show that KDM5B, which demethylates lysine 4 of histone H3, co-localizes with H3K4me3 near promoters and enhancers of active genes in ES cells; its depletion leads to spreading of H3K4 methylation into gene bodies and enhancer shores, indicating that KDM5B functions to focus H3K4 methylation at promoters and enhancers. Spreading of H3K4 methylation to gene bodies and enhancer shores is linked to defects in gene expression programs and enhancer activity, respectively, during self-renewal and differentiation of KDM5B-depleted ES cells. KDM5B critically regulates H3K4 methylation at bivalent genes during differentiation in the absence of LIF or Oct4. We also show that KDM5B and LSD1, another H3K4 demethylase, co-regulate H3K4 methylation at active promoters but they retain distinct roles in demethylating gene body regions and bivalent genes.

Conclusions

Our results provide global and functional insight into the role of KDM5B in regulating H3K4 methylation marks near promoters, gene bodies, and enhancers in ES cells and during differentiation.  相似文献   

6.
7.
Plews JR  Li J  Jones M  Moore HD  Mason C  Andrews PW  Na J 《PloS one》2010,5(12):e14397

Background

Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS) cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.

Methodology/Principal Findings

In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT) and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES) cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5′-aza-2′-deoxycytidine) and cultured in human embryonic stem cell (ES) medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.

Conclusion/Significance

Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.  相似文献   

8.
9.
《Autophagy》2013,9(12):2126-2139
We screened a chemical library in MCF-7 cells stably expressing green fluorescent protein (GFP)-conjugated microtubule-associated protein 1 light chain 3 (LC3) (GFP-LC3-MCF-7) using cell-based assay, and identified BIX-01294 (BIX), a selective inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2), as a strong autophagy inducer. BIX enhanced formation of GFP-LC3 puncta, LC3-II, and free GFP, signifying autophagic activation. Inhibition of these phenomena with chloroquine and increasement in punctate dKeima ratio (550/438) signal indicated that BIX activated autophagic flux. BIX-induced cell death was suppressed by the autophagy inhibitor, 3-methyladenine, or siRNA against BECN1 (VPS30/ATG6), ATG5, and ATG7, but not by caspase inhibitors. Moreover, EHMT2 siRNA augmented GFP-LC3 puncta, LC3-II, free GFP, and cell death, implying that inhibition of EHMT2 caused autophagy-mediated cell death. Treatment with EHMT2 siRNA and BIX accumulated intracellular reactive oxygen species (ROS). BIX augmented mitochondrial superoxide via NADPH oxidase activation. In addition, BIX increased hydrogen peroxide and glutathione redox potential in both cytosol and mitochondria. Treatment with N-acetyl-L-cysteine (NAC) or diphenyleneiodonium chloride (DPI) decreased BIX-induced LC3-II, GFP-LC3 puncta, and cell death, indicating that ROS instigated autophagy-dependent cell death triggered by BIX. We observed that BIX potentiated autophagy-dependent and caspase-independent cell death in estrogen receptor (ESR)-negative SKBr3 and ESR-positive MCF-7 breast cancer cells, HCT116 colon cancer cells, and importantly, in primary human breast and colon cancer cells. Together, the results suggest that BIX induces autophagy-dependent cell death via EHMT2 dysfunction and intracellular ROS accumulation in breast and colon cancer cells, therefore EHMT2 inhibition can be an effective therapeutic strategy for cancer treatment.  相似文献   

10.

Background

Hepatitis C virus (HCV) is a plus-strand RNA virus that replicates by amplification of genomic RNA from minus strands leading to accumulation of almost one thousand copies per cell under in vitro cell culture conditions. In contrast, HCV RNA copy numbers in livers of infected patients appear to be much lower, estimated at a few copies per cell.

Methodology/Principal Findings

To gain insights into mechanisms that control HCV replication in vivo, we analyzed HCV RNA levels as well as expression of interferon beta (IFNβ) and several interferon stimulated genes (ISGs) from whole liver sections and micro-dissected subpopulations of hepatocytes in biopsy samples from 21 HCV-infected patients. The results showed that intrahepatic HCV RNA levels range form less than one copy per hepatocyte to a maximum of about eight. A correlation existed between viral RNA levels and IFNβ expression, but not between viral RNA and ISG levels. Also, IFNβ expression did not correlate with ISGs levels. Replication of HCV RNA occurred in focal areas in the liver in the presence of a general induction of ISGs.

Conclusion/Significance

The low average levels of HCV RNA in biopsy samples can be explained by focal distribution of infected hepatocytes. HCV replication directly induces IFNβ, which then activates ISGs. The apparent lack of a correlation between levels of IFNβ and ISG expression indicates that control of the innate immune response during HCV infections depends on multiple factors.  相似文献   

11.
12.
13.
14.

Background/Objective

IFNs are a group of cytokines that possess potent antiviral and antitumor activities, while β-catenin pathway is a proliferative pathway involved in carcinogenesis. Interaction between these two pathways has not been well elaborated in hepatocellular carcinoma (HCC).

Methods

HCC cell lines, HepG2 and Huh7, were used in this study. β-catenin protein levels and corresponding signaling activities were observed by flow cytometry and luciferase assay, respectively. Cell proliferation was quantified by counting viable cells under microscope, and apoptosis by TUNEL assay. DKK1 and GSK3β levels were determined by flow cytometry. Secreted DKK1 was tested by ELISA. FLUD, S3I and aDKK1 were used to inhibit STAT1, STAT3 and DKK1 activities, respectively.

Results

Our findings show that all three types of IFNs, IFNα, IFNγ and IFNλ, are capable of inhibiting β-catenin signaling activity in HepG2 and Huh7 cells, where IFNγ was the strongest (p<0.05). They expressed suppression of cellular proliferation and induced apoptosis. IFNγ expressed greater induction ability when compared to IFNα and IFNλ (p<0.05). All tested IFNs could induce DKK1 activation but not GSK3β in HepG2 and Huh7 cells. IFNs induced STAT1 and STAT3 activation but by using specific inhibitors, we found that only STAT3 is vital for IFN-induced DKK1 activation and apoptosis. In addition, DKK1 inhibitor blocked IFN-induced apoptosis. The pattern of STAT3 activation by different IFNs is found consistent with the levels of apoptosis with the corresponding IFNs (p<0.05).

Conclusions

In hepatocellular carcinoma, all three types of IFNs are found to induce apoptosis by inhibiting β-catenin signaling pathway via a STAT3- and DKK1-dependent pathway. This finding points to a cross-talk between different IFN types and β-catenin signaling pathways which might be carrying a biological effect not only on HCC, but also on processes where the two pathways bridge.  相似文献   

15.
16.
17.

Background/Aims

MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML). Our objective is to decipher a miRNA expression signature associated with CML and to determine potential target genes and signaling pathways affected by these signature miRNAs.

Results

Using miRNA microarrays and miRNA real-time PCR we characterized the miRNAs expression profile of CML cell lines and patients in reference to non-CML cell lines and healthy blood. Of all miRNAs tested, miR-31, miR-155, and miR-564 were down-regulated in CML cells. Down-regulation of these miRNAs was dependent on BCR-ABL activity. We next analyzed predicted targets and affected pathways of the deregulated miRNAs. As expected, in K562 cells, the expression of several of these targets was inverted to that of the miRNA putatively regulating them. Reassuringly, the analysis identified CML as the main disease associated with these miRNAs. MAPK, ErbB, mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) were the main molecular pathways related with these expression patterns. Utilizing Venn diagrams we found appreciable overlap between the CML-related miRNAs and the signaling pathways-related miRNAs.

Conclusions

The miRNAs identified in this study might offer a pivotal role in CML. Nevertheless, while these data point to a central disease, the precise molecular pathway/s targeted by these miRNAs is variable implying a high level of complexity of miRNA target selection and regulation. These deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of CML, and propose possible new avenues for therapeutic treatment.  相似文献   

18.
19.
20.

Introduction

Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes.

Methods

Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry.

Results

The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage.

Conclusion

These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号