首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse. The different strains of TMEV are divided into two subgroups according to the pathology they provoke. The neurovirulent strains GDVII and FA induce an acute fatal encephalitis, while persistent strains, like DA and BeAn, cause a chronic demyelinating disease associated with viral persistence in the central nervous system. Different receptor usage was proposed to account for most of the phenotype difference between neurovirulent and persistent strains. Persistent but not neurovirulent strains were shown to bind sialic acid. We characterized DA and GDVII derivatives adapted to grow on CHO-K1 cells. Expression of glycosaminoglycans did not influence infection of CHO-K1 cells by parental and adapted viruses. Mutations resulting from adaptation of DA and GDVII to CHO-K1 cells notably mapped to the well-characterized VP1 CD and VP2 EF loops of the capsid. Adaptation of the DA virus to CHO-K1 cells correlated with decreased sialic acid usage for entry. In contrast, adaptation of the GDVII virus to CHO-K1 cells correlated with the appearance of a weak sialic acid usage for entry. The sialic acid binding capacity of the GDVII variant resulted from a single amino acid mutation (VP1-51, Asn-->Ser) located out of the sialic acid binding region defined for virus DA. Mutations affecting tropism in vitro and sialic acid binding dramatically affected the persistence and neurovirulence of the viruses.  相似文献   

2.
Neurovirulence of the Onderstepoort strain of canine distemper virus (CDV) adapted to human neural cell lines was determined by the intracerebral inoculation of DDD mice at 3 and 5 weeks of age. Intensity of neurovirulence was estimated by histopathological changes in the central nervous system and clinical symptoms. The original virus propagated in Vero cells induced leptomeningoencephalitis, whereas neuroblastoma-adapted virus induced nerve cell degeneration and mild encephalitis with relatively low morbidity and fatality. In contrast, the viruses adapted to glioblastoma and oligodendroglioma caused high morbidity and fatality. The latter two viruses induced necrotizing encephalopathy including edema and hyperemia. In addition, the glioblastoma-adapted virus induced formation of giant cells. The oligodendroglioma-adapted virus caused demyelination and spongy state associated with degeneration of glial cells and axons. These observations are discussed in regard to a possible correlation between the neurovirulence of CDV in mice and its tropism for neural cells in vitro.  相似文献   

3.
Reddi HV  Lipton HL 《Journal of virology》2002,76(16):8400-8407
The mechanisms by which Theiler's murine encephalomyelitis virus (TMEV) binds and enters host cells and the molecules involved are not completely understood. In this study, we demonstrate that the high-neurovirulence TMEV GDVII virus uses the glycosaminoglycan heparan sulfate (HS) as an attachment factor that is required for efficient infection. Studies based on soluble HS-mediated inhibition of attachment and infection, removal of HS with specific enzymes, and blocking with anti-HS antibodies establish that HS mediates GDVII virus entry into mammalian cells. Data from defined proteoglycan-deficient Chinese hamster ovary mutant cells further support the role of HS in GDVII infection and indicate that the extent of sulfation is critical for infection. Neuraminidase treatment of proteoglycan-deficient cells restores permissiveness to GDVII virus, indicating that sialic acid hinders direct access of virus to the protein entry receptor. A model of the potential steps in GDVII virus entry into mammalian cells involving HS is proposed.  相似文献   

4.
The DA strain of Theiler's virus persists in the central nervous systems of mice and causes chronic inflammation and demyelination. The GDVII strain, on the other hand, causes an acute encephalitis that kills the host in a matter of days. We constructed a series of recombinants between two infectious cDNA clones of the genomes of DA and GDVII viruses. Analysis of the phenotypes of the recombinant viruses yielded the following results. (i) Determinants of persistence and demyelination are found only in the VP1 capsid protein of DA virus. (ii) Whereas the VP1 capsid protein of DA virus is able to fully attenuate the neurovirulence of GDVII virus and to allow the chimeric virus to persist and demyelinate, the VP1 capsid protein of GDVII virus is unable to render DA virus neurovirulent. (iii) The mere attenuation of the neurovirulence of GDVII virus does not allow it to persist and demyelinate.  相似文献   

5.
6.
L Zhou  X Lin  T J Green  H L Lipton    M Luo 《Journal of virology》1997,71(12):9701-9712
Theiler's murine encephalomyelitis viruses (TMEVs) belong to the Picornaviridae family and are divided into two groups, typified by strain GDVII virus and members of the TO (Theiler's original) group. The highly virulent GDVII group causes acute encephalitis in mice, while the TO group is less virulent and causes a chronic demyelinating disease which is associated with viral persistence in mice. This persistent central nervous system infection with demyelination resembles multiple sclerosis (MS) in humans and has thus become an important model for studying MS. It has been shown that some of the determinants associated with viral persistence are located on the capsid proteins of the TO group. Structural comparisons of two persistent strains (BeAn and DA) and a highly virulent strain (GDVII) showed that the most significant structural variations between these two groups of viruses are located on the sites that may influence virus binding to cellular receptors. Most animal viruses attach to specific cellular receptors that, in part, determine host range and tissue tropism. In this study, atomic models of TMEV chimeras were built with the known structures of GDVII, BeAn, and DA viruses. Comparisons among the known GDVII, BeAn, and DA structures as well as the predicted models for the TMEV chimeras suggested that a gap on the capsid surface next to the putative receptor binding site, composed of residues from VP1 and VP2, may be important in determining viral persistence by influencing virus attachment to cellular receptors, such as sialyloligosaccharides. Our results showed that sialyllactose, the first three sugar molecules of common oligosaccharides on the surface of mammalian cells, inhibits virus binding to the host cell and infection with the persistent BeAn virus but not the nonpersistent GDVII and chimera 39 viruses.  相似文献   

7.
Theiler's murine encephalomyelitis viruses (TMEV) are ubiquitous pathogens of mice, producing either rapidly fatal encephalitis (high-neurovirulence strains) or persistent central nervous system infection and inflammatory demyelination (low-neurovirulence strains). Although a protein entry receptor has not yet been identified, carbohydrate co-receptors that effect docking and concentration of the virus on the cell surface are known for both TMEV neurovirulence groups. Low-neurovirulence TMEV use α2,3-linked N-acetylneuramic acid (sialic acid) on an N-linked glycoprotein, whereas high-neurovirulence TMEV use the proteoglycan heparan sulfate (HS) as a co-receptor. While the binding of low-neurovirulence TMEV to sialic acid can be inhibited completely, only a third of the binding of high-neurovirulence TMEV to HS is inhibitable, suggesting that high-neurovirulence strains use another co-receptor or bind directly to the putative protein entry receptor. Four amino acids on the surface (VP2 puff B) of low-neurovirulence strains make contact with sialic acid through non-covalent hydrogen bonds. Since these virus residues are conserved in all TMEV strains, the capsid conformation of this region is probably responsible for sialic acid binding. A persistence determinant that maps within the virus coat using recombinant TMEV is also conformational in nature. Low-neurovirulence virus variants that do not bind to sialic acid fail to persist in the central nervous system of mice, indicating a role for sialic acid binding in TMEV persistence. Analysis of high-neurovirulence variants that do not bind HS demonstrates that HS co-receptor usage influences neuronal tropism in brain, whereas, the HS co-receptor use is not required for the infection of spinal cord anterior horn cells associated with poliomyelitis.  相似文献   

8.
The DA strain of Theiler’s virus causes a persistent and demyelinating infection of the white matter of spinal cord, whereas the GDVII strain causes a fatal gray-matter encephalomyelitis. Studies with recombinant viruses showed that this difference in phenotype is controlled mainly by the capsid. However, conflicting results regarding the existence of determinants of persistence in the capsid of the GDVII strain have been published. Here we show that a GDVII virus whose neurovirulence has been attenuated by an insertion in the 5′ noncoding region does not persist in the central nervous systems of mice. Furthermore, this virus infects the gray matter efficiently, but not the white matter. These results confirm the absence of determinants of persistence in the GDVII capsid. They suggest that the DA capsid controls persistence by allowing the virus to infect cells in the white matter of the spinal cord.  相似文献   

9.
The distribution, spread, neuropathology, tropism, and persistence of the neurovirulent GDVII strain of Theiler's virus in the central nervous system (CNS) was investigated in mice susceptible and resistant to chronic demyelinating infection with TO strains. Following intracerebral inoculation, the virus spread rapidly to specific areas of the CNS. There were, however, specific structures in which infection was consistently undetectable. Virus spread both between adjacent cell bodies and along neuronal pathways. The distribution of the infection was dependent on the site of inoculation. The majority of viral RNA-positive cells were neurons. Many astrocytes were also positive. Infection of both of these cell types was lytic. In contrast, viral RNA-positive oligodendrocytes were rare and were observed only in well-established areas of infection. The majority of oligodendrocytes in these areas were viral RNA negative and were often the major cell type remaining; however, occasional destruction of these cells was observed. No differences in any of the above parameters were observed between CBA and BALB/c mice, susceptible and resistant, respectively, to chronic CNS demyelinating infection with TO strains of Theiler's virus. By using Southern blot hybridization to detect reverse-transcribed PCR-amplified viral RNA sequences, no virus persistence could be detected in the CNS of immunized mice surviving infection with GDVII. In conclusion, the GDVII strain of Theiler's murine encephalomyelitis virus cannot persist in the CNS, but this is not consequent upon an inability to infect glial cells, including oligodendrocytes.  相似文献   

10.
11.
Translation initiation of the picornavirus genome is regulated by an internal ribosome entry site (IRES). The IRES of a neurovirulent picornavirus, the GDVII strain of Theiler's murine encephalomyelitis virus, requires polypyrimidine tract-binding protein (PTB) for its function. Although neural cells are deficient in PTB, they express a neural-specific homologue of PTB (nPTB). We now show that nPTB and PTB bind similarly to multiple sites in the GDVII IRES, rendering it competent for efficient translation initiation. Mutation of a PTB or nPTB site results in a more prominent decrease in nPTB than PTB binding, a decrease in activity of nPTB compared with PTB in promoting translation initiation, and attenuation of the neurovirulence of the virus without a marked effect on virus growth in non-neural cells. The addition of a second-site mutation in the mutant IRES generates a new PTB (nPTB) binding site, and restores nPTB binding, translation initiation and neurovirulence. We conclude that the tissue-specific expression and differential RNA-binding properties of PTB and nPTB are important determinants of cell-specific translational control and viral neurovirulence.  相似文献   

12.
Intratypic recombinant Theiler's viruses prepared between GDVII and DA strains were used to identify genomic sequences important in neurovirulence, virus persistence, and demyelination and to clarify the mechanisms involved in disease induction. The coding region between 1B and 2C of the highly virulent GDVII strain contains a determinant partly responsible for neurovirulence (early paralysis and death) which correlates with elevated levels of infectious virus and the presence of virus antigen within neurons of the brain stem and gray matter of the spinal cord. Both the GDVII and the DA strains of virus contain genetic determinants for late demyelination in spinal cord. However, quantitative analysis of demyelination produced by recombinant GDVII/DA viruses suggest that multiple gene segments influence the number and extent of demyelinating lesions.  相似文献   

13.
L Zhang  A Senkowski  B Shim    R P Roos 《Journal of virology》1993,67(7):4404-4408
Strain GDVII and other members of the GDVII subgroup of Theiler's murine encephalomyelitis virus are highly neurovirulent and rapidly fatal, while strain DA and other members of the TO subgroup produce a chronic, demyelinating disease. GDVII/DA chimeric cDNA studies suggest that a major neurovirulence determinant is within the GDVII 1B through 1D capsid protein coding region, although the additional presence of upstream GDVII sequences, including the 5' untranslated region, contributes to full neurovirulence. Our studies indicate that there are limitations in precisely delineating neurovirulence determinants with chimeric cDNAs between evolutionarily diverged viruses, such as GDVII and DA.  相似文献   

14.
The stability of neurovirulence and in vitro phenotypes of canine distemper viruses adapted to neural cells was examined. Neurovirulence was estimated by the morbidity, mortality, and histopathological changes in the central nervous system of mice. After a single passage of the adapted viruses in Vero cells in which the unadapted virus had been passed, the neurovirulence of glioblastoma-adapted and oligodendroglioma-adapted viruses reverted completely to that of the unadapted virus. However, the neurovirulence of a neuroblastoma-adapted virus reverted partially. In vitro phenotypes such as the two-dimensional electrophoretic patterns of viral proteins and the cross-neutralization patterns also reverted to those of the unadapted virus. However, plaque sizes remained similar to those of the viruses adapted to neural cells.  相似文献   

15.
The strains of Theiler’s murine encephalomyelitis virus, a picornavirus, are divided into two groups according to their neurovirulence after intracerebral inoculation. The highly virulent GDVII strain causes an acute, fatal encephalomyelitis, whereas the DA strain causes a mild encephalomyelitis followed by a chronic inflammatory demyelinating disease associated with viral persistence. Studies with recombinant viruses showed that the capsid plays the major role in determining these phenotypes. However, the molecular basis for the effect of the capsid on neurovirulence is still unknown. In this paper, we describe a large difference in the patterns of infection of primary neuron cultures by the GDVII and DA strains. Close to 90% of the neurons were infected 12 h after inoculation with the GDVII strain, and the cytopathic effect was complete 24 h postinoculation. In contrast, with the DA strain, viral antigens were not detected in neurons until 24 h postinoculation. Infected neurons accounted for only 2% of the total number of neurons, even 6 days after inoculation. No cytopathic effect was visible, and the cultures could be kept for the same length of time as the noninfected controls. Because the neurovirulence of the GDVII strain has been mapped to the capsid, we examined the role of the capsid in this difference of phenotype. We showed, using recombinant viruses, that the capsid was indeed responsible for the pattern of infection observed in vitro, most likely through its role in viral entry. Thus, the levels of neurovirulence of the GDVII and DA strains correlate with their abilities to infect cultured neurons, and this ability is controlled by the capsid.  相似文献   

16.
Persistent Theiler's virus infection in the central nervous system (CNS) of mice provides a highly relevant animal model for multiple sclerosis. The low-neurovirulence DA strain uses sialic acid as a coreceptor for cell binding before establishing infection. During adaptation of DA virus to growth in sialic acid-deficient cells, three amino acid substitutions (G1100D, T1081I, and T3182A) in the capsid arose, and the virus no longer used sialic acid as a coreceptor. The adapted virus retained acute CNS virulence, but its persistence in the CNS, white matter inflammation, and demyelination were largely abrogated. Infection of murine macrophage but not oligodendrocyte cultures with the adapted virus was also significantly reduced. Substitution of G1100D in an infectious DA virus cDNA clone demonstrated a major role for this mutation in loss of sialic acid binding and CNS persistence. These data indicate a direct role for sialic acid binding in Theiler's murine encephalomyelitis virus persistence and chronic demyelinating disease.  相似文献   

17.
GDVII virus growth in BHK-21 cells, a permissive host for the virus, resembled productive infections with other picornaviruses. Virus yields ranged from 100 to 600 plaque-forming units (PFU)/cell. Virus replication in HeLa cells, a nonpermissive host for GDVII virus, was characterized by virus yields of only 0.1 to 5 PFU/cell. Similar low yields of virus have been obtained from HeLa cells at all multiplicities of input up to 6,000 per cell. The progeny particles from HeLa cells were, like the infecting particles, restricted in the HeLa cell host. Despite the great difference in final yields of virus from BHK-21 and HeLa cells, the times when maximal yields were reached were similar. GDVII virus stock grown in BHK-21 cells was designated HeLa(-). A variant of GDVII virus which is capable of extensive growth in HeLa cells was obtained. This variant, designated HeLa(+) GDVII virus, was passaged serially in HeLa cells. Virus yields of 50 to 150 infective virus particles per cell were obtained from infection of HeLa cells with HeLa(+) GDVII virus. The major species of HeLa(+) virus-specific ribonucleic acid (RNA) produced was single stranded and sedimented with an S value of 35S. The rate of accumulation of HeLa(+) virus-specific RNA in HeLa cell cultures was about four times that of HeLa(-) RNA. The amount of virus-specific HeLa(+) RNA formed in HeLa cells was several-fold greater than that of HeLa(-) RNA. With HeLa(-) parent GDVII virus undergoing productive replication in BHK-21 cells or abortive replication in HeLa cells, the major species of virus-specific RNA produced was single stranded and sedimented with an approximate S value of 35S. The amount of HeLa(-) virus-specific RNA extracted from BHK-21 cells was several-fold greater than the amount obtained from HeLa cells.  相似文献   

18.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.  相似文献   

19.
A major determinant of neurovirulence for the GDVII strain of Theiler's virus, a murine picornavirus, was mapped to the P1 capsid protein region. Chimeric viruses were constructed by using sequences from the 5' noncoding and P1 regions of the virulent GDVII strain to replace equivalent regions of the less virulent BeAn strain. Neurovirulence in mice progressively increased as larger regions of BeAn capsid protein-encoding sequences were replaced. The in vitro growth characteristics of the chimeras showed that some chimeras were growth delayed in BHK-21 cells even though the viral constructs exhibited larger plaque sizes, were less temperature sensitive, and were more thermally stable than BeAn. Examination of assembly intermediates revealed an altered pentamer conformation and delayed empty capsid formation for the growth-compromised viruses. For these constructs, their chimeric nature inadvertently resulted in virion assembly defects that complicated finer-scale mapping of the determinants of virulence within the capsid region. These results demonstrate the importance of determining in vitro growth characteristics of chimeras to correctly decipher the significance of their phenotypes. VP1 does not contain a complete determinate for virulence because a chimera with VP1-encoding sequences from GDVII in an otherwise BeAn virus has an attenuated phenotype but is not growth compromised in vitro. The source of sequences, BeAn or GDVII, in the 5' noncoding region had only slight effects on the virulence of recombinant constructs.  相似文献   

20.
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号