首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse. The different strains of TMEV are divided into two subgroups according to the pathology they provoke. The neurovirulent strains GDVII and FA induce an acute fatal encephalitis, while persistent strains, like DA and BeAn, cause a chronic demyelinating disease associated with viral persistence in the central nervous system. Different receptor usage was proposed to account for most of the phenotype difference between neurovirulent and persistent strains. Persistent but not neurovirulent strains were shown to bind sialic acid. We characterized DA and GDVII derivatives adapted to grow on CHO-K1 cells. Expression of glycosaminoglycans did not influence infection of CHO-K1 cells by parental and adapted viruses. Mutations resulting from adaptation of DA and GDVII to CHO-K1 cells notably mapped to the well-characterized VP1 CD and VP2 EF loops of the capsid. Adaptation of the DA virus to CHO-K1 cells correlated with decreased sialic acid usage for entry. In contrast, adaptation of the GDVII virus to CHO-K1 cells correlated with the appearance of a weak sialic acid usage for entry. The sialic acid binding capacity of the GDVII variant resulted from a single amino acid mutation (VP1-51, Asn-->Ser) located out of the sialic acid binding region defined for virus DA. Mutations affecting tropism in vitro and sialic acid binding dramatically affected the persistence and neurovirulence of the viruses.  相似文献   

2.
Zhou L  Luo Y  Wu Y  Tsao J  Luo M 《Journal of virology》2000,74(3):1477-1485
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus of the Cardiovirus genus. Certain strains of TMEV may cause a chronic demyelinating disease, which is very similar to multiple sclerosis in humans, associated with a persistent viral infection in the mouse central nervous system (CNS). Other strains of TMEV only cause an acute infection without persistence in the CNS. It has been shown that sialic acid is a receptor moiety only for the persistent TMEV strains and not for the nonpersistent strains. We report the effect of sialylation on cell surface on entry and the complex structure of DA virus, a persistent TMEV, and the receptor moiety mimic, sialyllactose, refined to a resolution of 3.0 A. The ligand binds to a pocket on the viral surface, composed mainly of the amino acid residues from capsid protein VP2 puff B, in the vicinity of the VP1 loop and VP3 C terminus. The interaction of the receptor moiety with the persistent DA strain provides new understanding for the demyelinating persistent infection in the mouse CNS by TMEV.  相似文献   

3.
Theiler's murine encephalomyelitis viruses (TMEV) are ubiquitous pathogens of mice, producing either rapidly fatal encephalitis (high-neurovirulence strains) or persistent central nervous system infection and inflammatory demyelination (low-neurovirulence strains). Although a protein entry receptor has not yet been identified, carbohydrate co-receptors that effect docking and concentration of the virus on the cell surface are known for both TMEV neurovirulence groups. Low-neurovirulence TMEV use α2,3-linked N-acetylneuramic acid (sialic acid) on an N-linked glycoprotein, whereas high-neurovirulence TMEV use the proteoglycan heparan sulfate (HS) as a co-receptor. While the binding of low-neurovirulence TMEV to sialic acid can be inhibited completely, only a third of the binding of high-neurovirulence TMEV to HS is inhibitable, suggesting that high-neurovirulence strains use another co-receptor or bind directly to the putative protein entry receptor. Four amino acids on the surface (VP2 puff B) of low-neurovirulence strains make contact with sialic acid through non-covalent hydrogen bonds. Since these virus residues are conserved in all TMEV strains, the capsid conformation of this region is probably responsible for sialic acid binding. A persistence determinant that maps within the virus coat using recombinant TMEV is also conformational in nature. Low-neurovirulence virus variants that do not bind to sialic acid fail to persist in the central nervous system of mice, indicating a role for sialic acid binding in TMEV persistence. Analysis of high-neurovirulence variants that do not bind HS demonstrates that HS co-receptor usage influences neuronal tropism in brain, whereas, the HS co-receptor use is not required for the infection of spinal cord anterior horn cells associated with poliomyelitis.  相似文献   

4.
Theiler's murine encephalomyelitis viruses (TMEV) consist of two groups, the high- and low-neurovirulence groups, based on lethality in intracerebrally inoculated mice. Low-neurovirulence TMEV result in a persistent central nervous system infection in mice, leading to an inflammatory demyelinating pathology and disease. Low- but not high-neurovirulence strains use sialic acid as an attachment factor. The recent resolution of the crystal structure of the low-neurovirulence DA virus in complex with the sialic acid mimic sialyllactose demonstrated that four capsid residues make contact with sialic acid through noncovalent hydrogen bonds. To systematically test the importance of these sialic acid-binding residues in viral entry and infection, we mutated three VP2 puff B amino acids proposed to make contact with sialic acid and analyzed the consequences of each amino acid substitution on viral entry and spread. The fourth residue is in the VP3-VP1 cleavage dipeptide and could not be mutated. Our data suggest that residues Q2161 and G2174 are directly involved in BeAn virus attachment to sialic acid and that substitutions of these two residues result in the loss of or reduced viral binding and hemagglutination and in the inability to spread among BHK-21 cells. In addition, a gain of function-revertant virus was recovered with the Q2161A mutation after prolonged passage in cells.  相似文献   

5.
S L Rhode  rd 《Journal of virology》1982,42(3):1118-1122
We established a persistent infection in L 929 cells with the DA strain of Theiler's murine encephalomyelitis virus. Our studies showed that only a small number of cells in the cultures contained infectious virus or viral antigen. A role for interferon in the maintenance of persistence was suggested. Viral isolates from the cultures were not temperature sensitive, nor did they contain viral capsid polypeptide mutations or defective interfering particles. T1 oligonucleotide maps showed evidence of mutation in two of three isolates.  相似文献   

6.
Theiler's virus is a neurotropic murine picornavirus which, depending on the strain, causes either an acute encephalitis or a persistent demyelinating disease. Following intracranial inoculation, the demyelinating strains infect sequentially the grey matter of the brain, the grey matter of the spinal cord, and finally the white matter of the spinal cord, where they persist and cause chronic demyelination. The neurovirulent strains cause a generally fatal encephalitis with lytic infection of neurons. The study of chimeric Theiler's viruses, obtained by recombining the genomes of demyelinating and neurovirulent strains, has shown that the viral capsid contains determinants for persistence and demyelination. In this article we describe the recombinant virus R5, in which the capsid protein VP1 and a small portion of protein 2A come from the neurovirulent GDVII strain and the rest of the genome comes from the persistent DA strain. The capsid of virus R5 also contains one mutation at amino acid 34 of VP3 (Asn-->His). Virus R5 does not persist in the central nervous system (CNS) of immunocompetent SJL/J or BALB/c mice. However, it replicates efficiently and persists in the CNS of BALB/c nu/nu mice, showing that its growth in the CNS is not impaired. In BALB/c nu/nu mice, whereas virus DA causes mortality with large amounts of viral antigens in the white matter of the spinal cord, virus R5 does not kill the animals, persists in the neurons of the grey matter of the brain, and never reaches the white matter of the spinal cord. This phenotype is due to the chimerism of the capsid and/or to the mutation in VP3. These results indicate that the capsid plays an important role in the characteristic migration of Theiler's virus within the CNS.  相似文献   

7.
The high-neurovirulence Theiler's murine encephalomyelitis virus (TMEV) strain GDVII uses heparan sulfate (HS) as a coreceptor to enter target cells. We report here that GDVII virus adapted to growth in HS-deficient cells exhibited two amino acid substitutions (R3126L and N1051S) in the capsid and no longer used HS as a coreceptor. Infectious-virus yields in CHO cells were 25-fold higher for the adapted virus than for the parental GDVII virus, and the neurovirulence of the adapted virus in intracerebrally inoculated mice was substantially attenuated. The adapted virus showed altered cell tropism in the central nervous systems of mice, shifting from cerebral and brainstem neurons to spinal cord anterior horn cells; thus, severe poliomyelitis, but not acute encephalitis, was observed in infected mice. These data indicate that the use of HS as a coreceptor by GDVII virus facilitates cell entry and plays an important role in cell tropism and neurovirulence in vivo.  相似文献   

8.
Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.  相似文献   

9.
Theiler's murine encephalomyelitis viruses are picornaviruses that can infect the central nervous system. The DA strain produces an acute polioencephalomyelitis followed by a chronic demyelinating disease in its natural host, the mouse. The ability of DA virus to induce a demyelinating disease renders this virus infection a model for human demyelinating diseases such as multiple sclerosis. Here we describe the generation and characterization of DA virus mutants that contain specific mutations in the viral capsid protein VP1 at sites believed to be important contact regions for the cellular receptor(s). A mutant virus with a threonine-to-aspartate (T81D) substitution in VP1 loop I adjacent to the putative virus receptor binding site exhibited a large-plaque phenotype but had a slower replication cycle in vitro. When this mutant virus was injected into susceptible mice, an altered tropism was seen during the acute stage of the disease and the chronic demyelinating disease was not produced. A virus with a threonine-to-valine substitution (T81V) did not cause any changes in the pattern or extent of disease seen in mice, whereas a virus with a tryptophan substitution at this position (T81W) produced a similar acute disease but was attenuated for the development of the chronic disease. A change in amino acids in a hydrophobic patch located in the wall of the pit, VP1 position 91, to a hydrophilic threonine (V91T) resulted in a profound attenuation of the acute and chronic disease without persistence of virus. This report illustrates the importance of the loop I of VP1 and a site in the wall of the pit in pathogenesis and that amino acid substitutions at these sites result in altered virus-host interactions.  相似文献   

10.
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.  相似文献   

11.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

12.
L Zhou  X Lin  T J Green  H L Lipton    M Luo 《Journal of virology》1997,71(12):9701-9712
Theiler's murine encephalomyelitis viruses (TMEVs) belong to the Picornaviridae family and are divided into two groups, typified by strain GDVII virus and members of the TO (Theiler's original) group. The highly virulent GDVII group causes acute encephalitis in mice, while the TO group is less virulent and causes a chronic demyelinating disease which is associated with viral persistence in mice. This persistent central nervous system infection with demyelination resembles multiple sclerosis (MS) in humans and has thus become an important model for studying MS. It has been shown that some of the determinants associated with viral persistence are located on the capsid proteins of the TO group. Structural comparisons of two persistent strains (BeAn and DA) and a highly virulent strain (GDVII) showed that the most significant structural variations between these two groups of viruses are located on the sites that may influence virus binding to cellular receptors. Most animal viruses attach to specific cellular receptors that, in part, determine host range and tissue tropism. In this study, atomic models of TMEV chimeras were built with the known structures of GDVII, BeAn, and DA viruses. Comparisons among the known GDVII, BeAn, and DA structures as well as the predicted models for the TMEV chimeras suggested that a gap on the capsid surface next to the putative receptor binding site, composed of residues from VP1 and VP2, may be important in determining viral persistence by influencing virus attachment to cellular receptors, such as sialyloligosaccharides. Our results showed that sialyllactose, the first three sugar molecules of common oligosaccharides on the surface of mammalian cells, inhibits virus binding to the host cell and infection with the persistent BeAn virus but not the nonpersistent GDVII and chimera 39 viruses.  相似文献   

13.
The role of humoral immunity in the protection of vaccinated SJL/J mice from central nervous system disease induced by the DA strain (DAV) of Theiler's murine encephalomyelitis virus was investigated in B-cell-deficient mice. Mice were depleted of B cells by treatment with a mouse monoclonal antibody specific for immunoglobulin M. DAV-vaccinated, B-cell-deficient mice failed to clear viral infection and were no longer protected from Theiler's murine encephalomyelitis virus-mediated central nervous system disease. CD4+ T cells are required in this model of protection to provide help for the development of an antiviral antibody response in the central nervous system.  相似文献   

14.
The DA strain of Theiler's murine encephalomyelitis virus (TMEV) causes a persistent central nervous system (CNS) infection of mice with a restricted virus gene expression and induces an inflammatory demyelinating disease that is thought to be immune mediated and a model of multiple sclerosis (MS). The relative contribution of virus vis-à-vis the immune system in the pathogenesis of DA-induced white matter disease remains unclear, as is also true in MS. To clarify the pathogenesis of DA-induced demyelination, we used Cre/loxP technology to generate a transgenic mouse that has tamoxifen (Tm)-inducible expression of a subgenomic segment of DA RNA in oligodendrocytes and Schwann cells. Tm-treated young transgenic mice developed progressive weakness leading to death, with abnormalities of oligodendrocytes and Schwann cells and demyelination, but without inflammation, demonstrating that DA virus can play a direct pathogenic role in demyelination. Tm treatment of mice at a later age resulted in milder disease, with evidence of peripheral nerve remyelination and focal fur depigmentation; surviving weak mice had persistent expression of the recombined transgene in the CNS, suggesting that the DA subgenomic segment can cause cellular dysfunction but not death, possibly similar to the situation seen during DA virus persistence. These studies demonstrate that DA RNA or a DA protein(s) is toxic to myelin-synthesizing cells. This Cre/loxP transgenic system allows for spatially and temporally controlled expression of the viral transgene and is valuable for clarifying nonimmune (and immune) mechanisms of demyelination induced by TMEV as well as other viruses.  相似文献   

15.
Theiler's virus infection induces a specific cytotoxic T lymphocyte response   总被引:10,自引:0,他引:10  
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible mouse strains and causes chronic inflammation and primary demyelination. One of the current hypotheses is that demyelination is, at least in part, mediated by virus-specific cytotoxic T lymphocytes (CTL). However, it is generally assumed that picornaviruses do not induce CTL. In point of fact, their existence has only been demonstrated for Coxsackievirus B-3. To determine whether Theiler's virus induces a CTL response, we generated a murine mastocytoma cell line stably transfected with the coding region of the genome of Theiler's virus strain DA. Using these cells as targets we showed that infected DBA/2 mice, a susceptible strain, produce cytotoxic T lymphocytes. The cytotoxic activity was Theiler's-virus specific. It was for the most part mediated by CD8+ T lymphocytes and H-2 restricted. This is the first demonstration that a specific CTL response is generated during Theiler's virus infection.  相似文献   

16.
During the first 45 days after intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV), the levels of mRNAs encoding chemokines MCP-1/CCL2, RANTES/CCL5, and IP-10/CXCL10 in the central nervous system (CNS) are closely related to the sites of virus gene expression and tissue inflammation. In the present study, these chemokines were monitored during the latter 135 days of a 6-month course of TMEV-induced disease in susceptible (PLJ) or resistant (C57BL/6) mice that possessed or lacked either CD4+ or CD8+ T cells. These data were additionally correlated to mouse genotype, virus persistence in the CNS, antiviral antibody titers, mortality, and the severity of neurological disease. Surprisingly, the major determinant of chemokine expression was virus persistence: the factors of susceptible or resistant genotype, severity of neuropathology, and presence or absence of regulatory T cells exerted minimal effects. Our observations indicated that chemokine expression in the CNS in this chronic viral disorder was intrinsic to the CNS innate immune response to infection and was not governed by elements of the adaptive immune system.  相似文献   

17.
The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce an early transient subclinical neuronal disease followed by a chronic progressive inflammatory demyelination, with persistence of the virus in the central nervous system (CNS) for the life of the mouse. Although TMEV-induced demyelinating disease (TMEV-IDD) is thought to be immune mediated, there is also evidence that supports a role for the virus in directly inducing demyelination. In order to clarify the function of DA virus genes, we generated a transgenic mouse that had tamoxifen-inducible expression of the DA L-coding region in oligodendrocytes (and Schwann cells), a cell type in which the virus is known to persist. Tamoxifen-treated young transgenic mice usually developed an acute progressive fatal paralysis, with abnormalities of the oligodendrocytes and Schwann cells and demyelination, but without significant lymphocytic infiltration; later treatment led to transient weakness with demyelination and persistent expression of the recombined transgene. These findings demonstrate that a high level of expression of DA L can cause the death of myelin-synthesizing cells and death of the mouse, while a lower level of L expression (which can persist) can lead to cellular dysfunction with survival. The results suggest that expression of DA L plays an important role in the pathogenesis of TMEV-IDD. Virus-induced infection and death of oligodendrocytes may play a part in the demyelination of other diseases in which an immune-mediated mechanism has been stressed, including multiple sclerosis.  相似文献   

18.
Infection of susceptible strains of mice with Daniel's (DA) strains of Theiler's murine encephalomyelitis virus (DAV) results in virus persistence in the central nervous system (CNS) white matter and chronic demyelination similar to that observed in multiple sclerosis. We investigated whether persistence is due to the immune system more efficiently clearing DAV from gray than from white matter of the CNS. Severe combined immunodeficient (SCID) and immunocompetent C.B-17 mice were infected with DAV to determine the kinetics, temporal distribution, and tropism of the virus in CNS. In early disease (6 h to 7 days postinfection), DAV replicated with similar kinetics in the brains and spinal cords of SCID and immunocompetent mice and in gray and white matter. DAV RNA was localized within 48 h in CNS cells of all phenotypes, including neurons, oligodendrocytes, astrocytes, and macrophages/microglia. In late disease (13 to 17 days postinfection), SCID mice became moribund and permitted higher DAV replication in both gray and white matter. In contrast, immunocompetent mice cleared virus from the gray matter but showed replication in the white matter of their brains and spinal cords. Reconstitution of SCID mice with nonimmune splenocytes or anti-DAV antibodies after establishment of infection demonstrated that both cellular and humoral immune responses decreased virus from the gray matter; however, the cellular responses were more effective. SCID mice reconstituted with splenocytes depleted of CD4+ or CD8+ T lymphocytes cleared virus from the gray matter but allowed replication in the white matter. These studies demonstrate that both neurons and glia are infected early following DAV infection but that virus persistence in the white matter is due to preferential clearance of virus from the gray matter by the immune system.  相似文献   

19.
TO subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) synthesize L* protein from an alternative initiation codon. We first demonstrated L* expression in the central nervous system (CNS) of TMEV-infected mice during the acute phase of infection by immunoprecipitation and immunoblotting with anti-L* antibody. In addition, we generated mutant viruses which synthesize FLAG or 3xFLAG epitope-tagged L* protein. With a mutant virus expressing 3xFLAG epitope-tagged L*, designated DA/3xFLAGL*, we investigated L* in the CNS in the acute phase of infection. DA/3xFLAGL* did not change the virus tropism in comparison with wild-type virus, and L* was clearly identified in the CNS in both susceptible and resistant strains of mice. Double immunolabeling studies showed that L* is colocalized with TMEV polyprotein and exclusively expressed in neurons.  相似文献   

20.
The genome of picornaviruses contains a large open reading frame (ORF) translated as a precursor polypeptide that is processed to yield all the proteins necessary for the viral life cycle. In persistent but not in neurovirulent strains of Theiler's virus, an overlapping ORF encodes an additional 18-kDa protein called L*. We confirmed previous work showing that the L* ORF of persistent strains facilitates the infection of macrophage cell lines, and we present evidence that this effect is due to the L* protein itself rather than to competition for the translation of the two overlapping ORFs. The introduction of an AUG codon to restore the L* ORF of the neurovirulent GDVII strain also enhanced the infection of macrophages, in spite of the divergent evolution of this protein. The presence or the absence of the L* AUG initiation codon had only a weak influence on the neurovirulence of the GDVII strain and on the persistence of the DA1 strain. The results obtained with DA1 in vivo contrast with the results reported previously for DAFL3, another molecular clone of the same virus strain, where the AUG-to-ACG mutation of the L* initiation codon totally blocked viral persistence (G. D. Ghadge, L. Ma, S. Sato, J. Kim, and R. P. Roos, J. Virol. 72:8605-8612, 1998). Thus, a factor that is critical for the persistence of a given clone of Theiler's virus is dispensable for the persistence of a closely related clone, indicating that different adjustments in the expression of persistence determinants occur in related viral strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号