首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The YycFG two-component system is the only signal transduction system in Bacillus subtilis known to be essential for cell viability. This system is highly conserved in low-G+C gram-positive bacteria, regulating important processes such as cell wall homeostasis, cell membrane integrity, and cell division. Four other genes, yycHIJK, are organized within the same operon with yycF and yycG in B. subtilis. Recently, it was shown that the product of one of these genes, the YycH protein, regulated the activity of this signal transduction system, whereas no function could be assigned to the other genes. Results presented here show that YycI and YycH proteins interact to control the activity of the YycG kinase. Strains carrying individual in-frame deletion of the yycI and yycH coding sequences were constructed and showed identical phenotypes, namely a 10-fold-elevated expression of the YycF-dependent gene yocH, growth defects, as well as a cell wall defect. Cell wall and growth defects were a direct result of overregulation of the YycF regulon, since a strain overexpressing YycF showed phenotypes similar to those of yycH and yycI deletion strains. Both YycI and YycH proteins are localized outside the cytoplasm and attached to the membrane by an N-terminal transmembrane sequence. Bacterial two-hybrid data showed that the YycH, YycI, and the kinase YycG form a ternary complex. The data suggest that YycH and YycI control the activity of YycG in the periplasm and that this control is crucial in regulating important cellular processes.  相似文献   

2.
3.
Türck M  Bierbaum G 《PloS one》2012,7(1):e30403

Background

The YycFG two-component regulatory system (TCS) of Staphylococcus aureus represents the only essential TCS that is almost ubiquitously distributed in Gram-positive bacteria with a low G+C-content. YycG (WalK/VicK) is a sensor histidine-kinase and YycF (WalR/VicR) is the cognate response regulator. Both proteins play an important role in the biosynthesis of the cell envelope and mutations in these proteins have been involved in development of vancomycin and daptomycin resistance.

Methodology/Principal Findings

Here we present high yield expression and purification of the full-length YycG and YycF proteins as well as of the auxiliary proteins YycH and YycI of Staphylococcus aureus. Activity tests of the YycG kinase and a mutated version, that harbours an Y306N exchange in its cytoplasmic PAS domain, in a detergent-micelle-model and a phosholipid-liposome-model showed kinase activity (autophosphorylation and phosphoryl group transfer to YycF) only in the presence of elevated concentrations of alkali salts. A direct comparison of the activity of the kinases in the liposome-model indicated a higher activity of the mutated YycG kinase. Further experiments indicated that YycG responds to fluidity changes in its microenvironment.

Conclusions/Significance

The combination of high yield expression, purification and activity testing of membrane and membrane-associated proteins provides an excellent experimental basis for further protein-protein interaction studies and for identification of all signals received by the YycFGHI system.  相似文献   

4.
The Bacillus subtilis YycFG two-component signal transduction system is essential for cell viability, and the YycH protein is part of the regulatory circuit that controls its activity. The crystal structure of YycH was solved by two-wavelength selenium anomalous dispersion data, and was refined using 2.3 A data to an R-factor of 25.2%. The molecule is made up of three domains, and has a novel three-dimensional structure. The N-terminal domain features a calcium binding site and the central domain contains two conserved loop regions.  相似文献   

5.
Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA) has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR). Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.  相似文献   

6.
Proteins UK114 and p14.5 are both members of the putative family of small proteins YER057c/YIL051c/YjgF. The biological role of these proteins is not understood very well, and in addition, their oligomeric structure in solution remains controversial. We therefore investigated the oligomeric structure of UK114 and p14.5 using a number of methods. Both proteins have exhibited a homotrimeric structure in solution. Indeed the trimeric structure of the two proteins appeared to be so similar that when protein subunits derived from different species were mixed, stable heterotrimeric complexes (monomer ratio of 1:2 and 2:1 of UK114 and p14.5, respectively) could be formed in vitro. Furthermore, the trimeric structure of both UK114 and p14.5 proved essential for the stoichiometric hydrophobic ligand, such as fatty acid binding activity of the two proteins.  相似文献   

7.
Many proteins that bind purine nucleotide triphosphates have a type A sequence motif. Only two classes of structures for such proteins are so far available from X-ray crystallography. We examined the tertiary structures of representatives of the two classes, porcine cytoplasmic adenylate kinase and Escherichia coli translational elongation factor Tu. Comparison of the two proteins suggests that the A motif may be just one part of a larger common core structure consisting of four parallel strands of beta-sheet sandwiched between four alpha-helices. This compact core structure comprises over one half of each protein. We speculate that A motif proteins have diverged from a common ancestor having this core structure.  相似文献   

8.
We use molecular dynamics simulation to study the aggregation of Src SH3 domain proteins. For the case of two proteins, we observe two possible aggregation conformations: the closed form dimer and the open aggregation state. The closed dimer is formed by "domain swapping"-the two proteins exchange their RT-loops. All the hydrophobic residues are buried inside the dimer so proteins cannot further aggregate into elongated amyloid fibrils. We find that the open structure-stabilized by backbone hydrogen bond interactions-packs the RT-loops together by swapping the two strands of the RT-loop. The packed RT-loops form a beta-sheet structure and expose the backbone to promote further aggregation. We also simulate more than two proteins, and find that the aggregate adopts a fibrillar double beta-sheet structure, which is formed by packing the RT-loops from different proteins. Our simulations are consistent with a possible generic amyloidogenesis scenario.  相似文献   

9.
Two geometrical parameters describing the structure of a polypeptide: V-dihedral angle between two sequential peptide bond planes and R-radius of curvature are used for structural classification of polypeptide structure in proteins. The relation between these two parameters was the basis for the definition of the conformational sub-space for early-stage structural forms. The cluster analysis of V and lnR, applied to the selected proteins of well-defined secondary structure (according to DSSP classification) and to proteins without any introductory classified analysis, revealed that several of the discriminated groups of proteins agree with the assumed model of early-stage conformational sub-space. This analysis shows that protein structures may be represented in VR space instead of Phi, Psi angles space, thus lowering the conformational space dimensionality. The VR model allows classification of traditional secondary structure elements as well as different Random Coil motifs, which broadens the range of recognized structural categories (compared to standard secondary structure elements).  相似文献   

10.
Circular dichroism spectra of proteins are sensitive to protein secondary structure. The CD spectra of alpha-rich proteins are similar to those of model alpha-helices, but beta-rich proteins exhibit CD spectra that are reminiscent of CD spectra of either model beta-sheets or unordered polypeptides. The existence of these two types of CD spectra for beta-rich proteins form the basis for their classification as betaI- and betaII-proteins. Although the conformation of beta-sheets is largely responsible for the CD spectra of betaI-proteins, the source of betaII-protein CD, which resembles that of unordered polypeptides, is not completely understood. The CD spectra of unordered polypeptides are similar to that of the poly(Pro)II helix, and the poly(Pro)II-type (P2) structure forms a significant fraction of the unordered conformation in globular proteins. We have compared the beta-sheet and P2 structure contents in beta-rich proteins to understand the origin of betaII-protein CD. We find that betaII-proteins have a ratio of P2 to beta-sheet content greater than 0.4, whereas for betaI-proteins this ratio is less than 0.4. The beta-sheet content in betaI-proteins is generally higher than that in betaII-proteins. The origin of two classes of CD spectra for beta-rich proteins appears to lie in their relative beta-sheet and P2 structure contents.  相似文献   

11.
《Journal of molecular biology》2019,431(7):1494-1505
WIPI proteins are mammalian PROPPIN family members that bind to phosphoinositides and play prominent roles in autophagosome biogenesis. Two phosphoinositide-binding sites were previously described in yeast PROPPIN Hsv2 but remain to be determined in mammalian WIPI proteins. Here, we characterized four human WIPI proteins (WIPI1–4) and solved the structure of WIPI3. WIPI proteins can bind to PI(3)P and PI(3,5)P2 and adopt a conventional seven-bladed β-propeller fold. The structure of WIPI3 revealed that WIPI proteins also contain two sites embedded in blades 5 and 6 for recognizing phosphoinositides, resembling that in Hsv2. Structural comparison further demonstrated that the two conserved phosphoinositide-binding sites in PROPPIN proteins are not identical but intrinsically tend to recognize different types of phosphoinositides. This work provides the structural evidence to support the conservation of the two phosphoinositide-binding sites in WIPI proteins and also uncovers the potential phosphoinositide-binding selectivity for each site.  相似文献   

12.
Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp.  相似文献   

13.
A model of the three-dimensional structure of the monocyte chemo-attractant and activating protein MCAF/MCP-1 is presented. The model is predicted based on the previously determined solution structure of interleukin-8 (IL-8/NAP-1) [Clore, G.M., Appella, E., Yamada, M., Matsushima, K. and Gronenborn, A.M. (1990) Biochemistry 29, 1689-1696]. Both proteins belong to a superfamily of cytokine proteins involved in cell-specific chemotaxis, host defense and the inflammatory response. The amino acid sequence identity between the two proteins is 24%. It is shown that the regular secondary structure elements of the parent structure can be retained in the modeled structure, such that the backbone hydrogen bonding pattern is very similar in the two structures. The polypeptide backbone is superimposable with an atomic r.m.s. difference of 0.9 A and all side chains can be modeled by transferring the parent side chain conformation to the new structure. Thus, the deduced structure, like the parent one, is a dimer and consists of a six-stranded antiparallel beta-sheet, formed by two three-stranded Greek keys, one from each monomer, upon which lie two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by approximately 14 A. All amino acid sequence changes can be accommodated within the parent polypeptide framework without major rearrangements. This is borne out by the fact that the IL-8/NAP-1 and modeled MCAF/MCP-1 structures have similar non-bonding energies. These results strongly suggest that both proteins and all other members of the superfamily most likely have the same tertiary structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ribosomal proteins from Escherichia coli have been isolated by a mild purification procedure. Their tertiary structure has been explored by two techniques, proton magnetic resonance and limited proteolysis. A number of proteins when subjected to limited proteolysis produce resistant fragments in good yields. In most cases this does not depend on the specificity of the enzyme used. The proteins S15, S16, S17 and L30 are not degraded at all, whereas a few proteins are very susceptible to proteolysis. 1H-NMR experiments show that the majority of the ribosomal proteins have a uniquely folded tertiary structure. This is particularly pronounced in the four proteins mentioned above which resist proteolysis. In general, a good agreement is observed between the degree of proteolytic resistance and the amount of folding indicated by NMR spectroscopy. Similar studies on a few ribosomal proteins purified under denaturing conditions show that, in contrast, these protein preparations are not structurally homogeneous and that they contain a mixture of denatured and renatured molecules. The results are interpreted in terms of a compactly folded tertiary structure for the four proteinase-resistant proteins while the majority of the other proteins appear to have two domains, one compactly folded and resistant to proteinase and the other flexible and susceptible to proteolysis. A few proteins seem to have a completely flexible structure and can therefore be easily degraded.  相似文献   

15.
It is widely recognized that stimuli-responsive nanostructures play a promising role in nanodevices for medical treatments and experimental tools. We have designed and constructed a basic structure which controls the distance between two termini domains through temperature reversibility. Our structure, shaped like a bouquet, is composed of two proteins, alpha-helix and elastin-like protein (ELP). Alpha-helices align and bundle the ELP while ELP twists and forms a fiber-like structure at warm temperatures. This ELP conformational change alters the distance between the structure termini at the site opposite the alpha-helix. We connected enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP) at the structure's two termini to evaluate the distance using fluorescence resonance energy transfer (FRET) efficiency. These proteins spontaneously formed a complex which decreased the distance between the two fluorescent proteins located at its termini, at physiologically relevant temperatures. This change was repeated with complete reversibility (n = 5).  相似文献   

16.
The Sac10b family consists of a group of highly conserved DNA binding proteins from both the euryarchaeotal and the crenarchaeotal branches of Archaea. The proteins have been suggested to play an architectural role in the chromosomal organization in these organisms. Previous studies have mainly focused on the Sac10b proteins from the crenarchaeota. Here, we report the 2.0 A resolution crystal structure of Mja10b from the euryarchaeon Methanococcus jannaschii. The model of Mja10b has been refined to an R-factor of 20.9%. The crystal structure of an Mja10b monomer reveals an alpha/beta structure of four beta-strands and two alpha-helices, and Mja10b assembles into a dimer via an extensive hydrophobic interface. Mja10b has a similar topology to that of its crenarchaeota counterpart Sso10b (also known as Alba). Structural comparison between the two proteins suggests that structural features such as hydrophobic inner core, acetylation sites, dimer interface, and DNA binding surface are conserved among Sac10b proteins. Structural differences between the two proteins were found in the loops. To understand the structural basis for the thermostability of Mja10b, the Mja10b structure was compared to other proteins with similar topology. Our data suggest that extensive ion-pair networks, optimized accessible surface area and the dimerization via hydrophobic interactions may contribute to the enhanced thermostability of Mja10b.  相似文献   

17.
Summary The primary structures of 11 proteins of ADP-glucose pyrophosphorylase are aligned and compared for relationships among them. These comparisons indicate that many domains are retained in the proteins from both the enteric bacteria and the proteins from angiosperm plants. The proteins from angiosperm plants show two main groups, with one of the main groups demonstrating two subgroups. The two main groups of angiosperm plant proteins are based upon the two subunits of the enzyme, whereas the subgroups of the large subunit group are based upon the tissue in which the particular gene had been expressed. Additionally, the small subunit group shows a slight but distinct division into a grouping based upon whether the protein is from a monocot or dicot source. Previous structure-function studies with the Escherichia coli enzyme have identified regions of the primary structure associated with the substrate binding site, the allosteric activator binding site, and the allosteric inhibitor binding site. There is conservation of the primary structure of the polypeptides for the substrate binding site and the allosteric activator binding site. The nucleotide sequences of the coding regions of the genes of 11 of these proteins are compared for relationships among them. This analysis indicates that the protein for the small subunit has been subject to greater selective pressure to retain a particular primary structure. Also, the coding region of the precursor gene for the small subunit diverged from the coding region of the precursor gene for the large subunits slightly prior to the divergence of the two coding regions of the genes for the two tissue-specific large subunit genes.Offprint requests to: J. Preiss  相似文献   

18.
The solution structure of MPN156, a ribosome-binding factor A (RBFA) protein family member from Mycoplasma pneumoniae, is presented. The structure, solved by nuclear magnetic resonance, has a type II KH fold typical of RNA binding proteins. Despite only approximately 20% sequence identity between MPN156 and another family member from Escherichia coli, the two proteins have high structural similarity. The comparison demonstrates that many of the conserved residues correspond to conserved elements in the structures. Compared to a structure based alignment, standard alignment methods based on sequence alone mispair a majority of amino acids in the two proteins. Implications of these discrepancies for sequence based structural modeling are discussed.  相似文献   

19.
Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution), have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.  相似文献   

20.
The beaded-chain filament is a unique cytoskeletal structure that appears in the elongating fiber cells during the differentiation of lens epithelial cells to form the mature fiber cells. This beaded-chain structure is made up of two proteins of molecular weight 95 kDa and 49 kDa. As a prerequisite for cloning the cDNAs of these proteins, newborn chicken lens total poly(A+) mRNA was translated in vitro, using a rabbit reticulocyte lysate system and [35S]-L-methionine. The labelled translation products were analyzed by one-and two dimensional gel electrophoresis followed by autoradiography. Immunoprobing of the translation products on Western blots using specific polyclonal antibodies identified the above proteins, and demonstrated the presence and expression of specific mRNAs in the neonatal chick lens, that code for the in vitro synthesis of these two cytoskeletal proteins. These mRNAs are low abundant mRNAs as compared to the crystallin mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号